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Stress fluctuations in sheared Stokesian suspensions
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We report an analysis, using the tools of nonlinear dynamics and chaos theory, of the fluctuations in the
stress determined from simulations of shear flow of Stokesian suspensions. The simulations are for shear
between plane parallel walls of a suspension of rigid identical spheres in a Newtonian fluid, over a range of
particle concentration. By analyzing the time series of the stress, we find that the dynamics underlying these
fluctuations is deterministic, low-dimensional, and chaotic. We use the dynamic and metric invariants of the
underlying dynamics as a means of characterizing suspension behavior. The dimension of the chaotic attractor
increases with particle concentration, indicating the increasing influence of multiple-body interactions on the
rheology of the suspension with rise in particle concentration. We use our analysis to make accurate predictions
of the short-term evolution of a stress component from its preceding time series, and predict the evolution of
one component of the stress using the time series of another. We comment on the physical origin of the chaotic
stress fluctuations, and on the implications of our results on the relation between the microstructure and the
stress.
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[. INTRODUCTION properties of nonlinear systems convey useful information on
their dynamics. The utilization of the tools of nonlinear dy-

Rheological properties of suspensions are examples afamics has led to the possibility of uncovering information
spatial averages over a large number of elements, which agbout the underlying dynamics of a system whose output is
individually chaotically varying(here the suspended par- in the form of a fluctuating time serig8—5]. Our broad
ticles exhibit chaotic motion showing a variety of interest- objectives in this work are to see whether these t6)g],
ing behavior. The bulk stress in a suspension of small parwhen applied to fluctuations in the bulk stress of Stokesian
ticles in a fluid depends on many factors, of which particlesuspensions, can capture information about their underlying
concentration, the Stokes numbg@vhich characterizes the dynamics, and hence lead to a way of characterizing their
importance of particle inertia in comparison with viscousbehavior by proper estimates of the dynamical and topologi-
force9, colloidal and Brownian forces, and flow type are cal (geometrical invariants of the fluctuating time series,
important. The dynamic interaction of these factors detersuch as dimension estimates, Lyapunov exponents, principal
mines the suspension microstructure, from which the macroeigenvalues, etc. Some of the possible advantages of study-
scopic rheological properties follow. Particulate suspensiongg fluctuations in rheological properties using the tools of
are, of course, encountered frequently in a variety of indusnonlinear dynamics and chaos theory @yehe identification
trial processes, and understanding their rheology can providef the existence of a low-dimensional attractor leading to the
significant commercial benefit. Moreover, suspensions arpossibility of intelligent chaos controlji) accurate short-
useful models of spatially extended chaotic systems, whiclhange predictions of fluctuation§iji) predicting fluctuations
can be analyzed both theoretically and experimentally, anth properties that are difficult to measuigich as the shear
their rheological properties represent easily measurable spatres$ from those that are easy to meas(gech as the nor-
tial averages over the positions of all the particles. mal stress on a boundanand (iv) using the invariant mea-

It is well known that the stress in a particulate suspensiorsures of the dynamics in design and scale-up of equipment.
exhibits strong fluctuations about a well-defined average. From a fundamental viewpoint, we expect that an analysis
The fluctuations increase in magnitude with the particle conef the stress fluctuations will provide useful information on
centration and are easily measurable in experiments, but ontyie microstructure, or arrangement of particles during shear.
the temporal average is usually reported. Stress fluctuatiorfSor Stokesian suspensions, the stress is simply a product of
in suspension flows have been observed in the simulations difie fluid viscosity, the shear rate, and a function of the mi-
pressure-driven flows and simple shear fldu2]. However, crostructure. Hence, fluctuations in the stress reflect directly
we are unaware of any study that has attempted to analyZ&uctuations in the microstructure. For dilute suspensions, hy-
these fluctuations. drodynamic interactions may be assumed to be pairwise, and

It is now widely recognized that the fluctuations in the the stress is therefore determined by the pair distribution

function. Batchelor and Greef8] determined analytically

the steady-state pair distribution function for pure straining
*Electronic address: trr432@yahoo.com flow assuming only hydrodynamic interactions between par-
"Electronic address: prnott@chemeng.iisc.ernet.in ticles, and thereby computed th@(¢$?) correction to the
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suspension viscosity. More recently, Brady and Mof@$ et al.[12], and Singh and Noftl3], and in numerical simu-
determined the pair distribution function for shear flow for alations by Singh and Nofi2].
weakly Brownian suspension with a repulsive interparticle The studies cited above do not address the issue of fluc-
force in addition to the hydrodynamics. They found that thetuations in the stress, but attempt to determine the time and
repulsive interaction breaks the fore-aft symmetry of the paispace averaged bulk stress in the suspension for a prescribed
distribution function, and therefore leads to finite normalflow field (Singh and Not{2] have commented on the fluc-
stress differences in the suspension. Both these studies carations, but have not analyzed therfrom a microstruc-
sidered unbounded flows for which there is a time-tural viewpoint, fluctuations in the stress are caused by tem-
independent steady state in the microstructure for dilute sugporal changes in the microstructure, which in turn arise from
pensions. In the concluding section of this paper, wewo sources(i) The chaotic motion of individual particles in
comment on the origin of fluctuations in the microstructurethe suspension, ar(d) fluctuations in the spatially averaged
and the implications of our results on the relation betweemmicrostructure due to a coupling between its evolution and
stress and microstructure. the flow. The former exists even in molecular systems, but its
In this paper, we report results obtained from a detailectharacteristic time scale is so small that it is unimportant in
analysis of the fluctuations of the stresses of a non-Browniathe hydrodynamic sense. In suspension flows, the only time
suspension of spheres in simple shear flow, for a range dfcale is that imposed by the shear rate, and therefore the
particle concentration and Couette gap. We present numereffects of the two mechanisms listed above are indistinguish-
cal evidence for the existence of a low-dimensional chaoti@ble. The important point is that these fluctuations have not
attractor in the rheological properties. This indicates that théoeen studied, and it is our belief that examining them
fluctuations of the rheology arise from low-dimensional de-through the conceptual lens of nonlinear dynamics would be
terministic dynamics. We use this information to predict suc-of significant benefit.
cessive fluctuations of the stress from the preceding fluctua-
t!ons. Wg also use this to perform a cross preqiction of the Il IMPLICATIONS OF CHAOS THEORY
time series of one stress component from the time series of
another, and indicate the potential of this approach. We find Prior to the development of methods of analysis for non-
that the invariant measures such as the correlation dimerinear systems, any irregularly varying data were assumed to
sion, Lyapunov exponent, etc., that characterize the fluctuaeither be not amenable to analysis in terms of deterministic
tions change with rise in concentration, suggesting change®odels or to require a very complicated model. The demon-
in the microstructure with increasing concentration. The corstration that simple deterministic models can lead to compli-
relation dimension for the normal and shear stresses is agated and irregular, or chaotic, behavior opened up the pos-
proximately the same for a constant area fraction of particlesibility of analyzing such data using deterministic models.
and we also observed that the values of the maximunthaos is a phenomenon that has been found in many physi-
Lyapunov exponents for different stress components areal systems and has been confirmed both theoretically and
roughly the same for a fixed particle concentration. From ouexperimentally. Chaos in a dynamical system is essentially
results we draw interesting conclusions on the relation becharacterized by the exponential divergence of initially adja-
tween the microstructure and rheology of the suspension. cent trajectories as the system evolves in time. Manifesta-
tions of chaos involve a wide range of systems, such as me-
chanical, electrical, hydrodynamic, and biological processes,
Il. RHEOLOGY OF SUSPENSIONS to name a few. Scientists and engineers have begun to appre-
Determination of the macroscopic properties of suspengiate the advantage; of Qesigning devices to explqit, rather
sions from the fluid mechanics around the particles origi-than disregard, nonlinearity and chaos. Understanding chaos
nated from Einstein’s celebrated wdik0], in which he con-  Offers the possibility of control over some complex and elu-
sidered the dilute limit where particle interactions are absentSiVe Processe$14,15. One important application where
Batchelor and Greef8] derived theO(¢?) contribution to chaos theory has been shown to be beneficial is in the under-

the viscosity, being the particle volume fraction, resulting St2nding and exploitation of fluid mixind 6]. In this case, a
combination of chaos theory, fluid mechanics, and transport

from binary particle interactions. Determining the bulk stress h h duced Lt K th
analytically at higher concentrations has not been possiblé€nomena has produced a general framework that now can
e used in a variety of practical situatiofis7].

as it requires computation of many-body hydrodynamic in-
teractions as well as knowledge of the statistics of the posi-
tion distribution of particles. A large number of studies have IV. SIMULATION METHOD
examined the shear viscosity of suspensions either by experi- . . . .
mentation or numerical simulations, with the implicit as- We confine our sf[udy to non-Brownian suspensions in the
sumption that their behavior is Newtonian. Recently, Bradyreg'_me of vanishingly small Reynolds number, ,Re
and Morris[9] argued that the presence of a nonhydrody-=pya®/ 7. Herep and » are the density and viscosity, re-
namic interaction force, however small, results in non-spectively, of the fluida is the radius of the suspended par-
Newtonian effects such as normal stress differences. Thouditles, andy is the imposed shear rate.

it is not clear that nonhydrodynamic forces are necessary, For an accurate determination of the dynamics of sus-
normal stress differences have been measured experimentapgnded particles, and thereby the bulk properties of the sus-
in non-Brownian suspensions by Gadala-M4fid], Zarraga  pension, the many-body hydrodynamic interactions between
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particles must be computed correctly. This is accomplished U
by the Stokesian dynamics techniqus], which computes i
particle interactions as a sum of the far- and near-field hy- : ' ‘
drodynamic interactions in a consistent and efficient manner. E . .
Brady et al.[19] developed a method for simulating an infi- i
nite suspension of hydrodynamically interacting particles, by " . ‘ .
periodically replicating a finite number of particles through- ; ‘
out space. The lattice summation is carried out using the : . '
method of Ewald, to accelerate the convergence. For a de- i . ‘
tailed description of the above procedure, the reader is re- -
ferred to Refs[19-21]. 7
Most studies that have employed Stokesian dynamics 5
have only investigated unbounded uniform shear, ignoring |
the effect of boundaries. In realistic situations, flow is set H :
either by the motion of the confining boundaries or driven by E
a pressure gradient, and the resulting dynamics can be quite
different from that of unbounded systems. The impermeable 5
walls alter the microstructur@.e., the local arrangement of "7 77 7toomToomoommoo o me oo
particleg near them, thereby altering the bulk properties.
Durlofsky et al. [20] were the first to incorporate the ef-
fect of plane boundaries in Stokesian dynamics simulations; FIG. 1. A schematic representation of the master cell for our
they discretized the walls into patches, and accounted fosimulations. The layer of pure fluid allows us to periodically repli-
interactions between the suspended spheres and the patchese the master cell and yet impose uniform shear in the suspension
However, they computed the interactions between spherdsee[2] for details.
(or patchep far apart using a simplistic, mean-field, ap-
proach. Nott and Brady1] computed the far-field interac- Here,US is the vector of velocities of the suspended particles
tions correctly, but approximated the wall as a planar latticeand F° is the vector of(external forces on them. Similarly,
of spheres, creating a “bumpy” wall. To simulate plane walls U¥ andF" are the velocities and forces, respectively, of the
more accurately, Singh and N¢&] modified the procedure wall discretizations. The resistanBg, depends only on the
of Nott and Brady{1] by using the exact sphere-wall resis- configuration, or the separation between particles, and the
tances while computing the near-field interactions, but Useduperscripts on it indicate the couplings between the spheres
the bumpy-wall model for computing the far-field interac- and walls(see Singh and Nof2]). The shear stress,, and
tions. To simulate fully developed plane Couette flow, theythe normal stress,, are determined directly from the forces
introduced a layer of pure fluid adjacent to the layer of suspn the walls, but determination of the normal stress is

pension in the master cell, which was then replicated perisjightly more complicatedsee[2] for detaily. Upon deter-
odically in the three directions. In this work, we follow eX- mining Us for a given configuration, the particle positions are
actly the procedure of Singh and N¢#; we briefly outline  ypdated by integrating
the simulation procedure below, and refer to their paper for a
full description. dxs
The master celsee Fig. ], containing a finite number of —_—
particles, is replicated periodically to achieve a suspension dt
layer of infinite extent in the flow and vorticity directions.
The velocities of the walls and the external forces on theand the entire process of solving E¢$)—(3) is repeated to
suspended particles are specified. For computational conveentinue the simulation.
nience, we have performed monolayer simulations in which While there is no external body force on the particles, we
the spheres are restricted from translating in zldirection  have imposed an interparticle repulsive interaction between
and the rotational movement of the spheres is allowed in théhem. Its main utility is in preventing the frequent particle
z direction only. Though this restriction will have an effect overlaps which result from the finite time step in the simu-
on the microstructure and therefore the bulk properties of théation, but it also provides a qualitative model for nonhydro-
suspension, we expect that the essential physics of the prodynamic effectd20,22 when the interparticle separation is
lem is retained in a monolayer simulatiph,21]. very small. The form of the repulsive force we have used is
The velocities of the suspended particles are given by the same as in the simulations [df],

us, (3

REY X US+ Ry X UY= —F* (1) N @
aB™— €43,
R
and the forces on the walls by
WS s L Wt " whereF ,; is the force exerted by sphegeon spherex. The
FuX U+ Regx U= —F" (2)  parametersy andF, specify the range of the force and its
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magnitude, respectively, is the separation between the sur- -0.06

faces of the spheres, agg; is the unit vector connecting the

sphere centers. -0.07 |
In the results that follow, all lengths have been scaled by

the particle radiusa, time by a/U (see Fig. 1, forces by -0.08

67 nUa (7 being the viscosity of the suspending flyidnd O

stresses byyU/H. o009
The only parameters in the problem are the Couettetjap

(rendered nondimensional by the particle radi)isthe area 01

fraction of particlesp, and the parametefs, and ., which

determine the repulsive interaction. The number of sus- ot

pended particledN, is related to¢ and H by the relation o1

A : A SR
Np=¢/(mH?). We computed the stresses for a range of 100 200 300 400 500 600 700 800 900 1000

these parameters, and analyzed their time series. Most of oL (8) ¢
results were obtained withl=18,F,=10 %, and x=100,

and particle area fraction in the range 0-:056. We have 0.05

studied the effect oH by performing simulations foH 0.04 |

=14,18,30 for¢p=0.2 andF, andx remaining as above. To

study the sensitivity of our results to the repulsive interac- 0.08 |

tion, we have performed simulations far=10, 100, and 0.02 |
1000, keeping-ou=0.01 for $=0.4 andH=18. o 001
1 O
V. NONLINEAR TIME-SERIES ANALYSIS or
-0.01 |
Figures 2a) and 2Zb) show that the shear and normal 0.02

stresses in a suspension of spheres subjected to plane Coue
flow exhibit persistent temporal fluctuations. A detailed -0.03 |
analysis of these irregular fluctuations in the stress, usinc 0.04 . . . ) . . , )
topological and dynamical methods, may reveal significant 100 200 300 400 500 600 700 800 900 1000
features about the dynamical system. The basic feature in th ¢
analysis using nonlinear dynamical methods is the character- . ] ) ] ]
ization of the attractor, a bounded subset of the phase space FIC- 2. Typical examples of the time series of the dimensionless
to which the system behavior eventually converges as jghear(a) and normalb) stresses against dimensionless time, shown
evolves in time. This characterization is based on the recor?ere forH =18 and¢$=0.2.
struction of the attractor of the system using delay recon-
struction or other similar methods. A critical review in imple- tiable function(diffeomorphism which maps the stateinto
menting different methods for the characterization of anan m-dimensional delay vector, is an embedding whman
attractor of dynamical systems and its implications are given=2n-+1, wheren is the dimension of the phase space in
in [23] and references therein. which the attractor of the dynamical system evol\&¥¢e say

Let x(t) represent the dynamics of a systerrheing the  that®:X—Y is an embedding of one compact spacito
properties that identify its state. In an experiment, we may benothery, if there is a one-to-one correspondence betwéen
able to measure only a single scalar as a function of timgnd®(X) with ® and® ~* continuous, such that it preserves
y(t). For instance, in a fluid flow experiment we may be ablethe differentiable structurg25] of the attractor including
to measure the pressure as a function of time. Since the preguch quantities as Lyapunov exponents, dimension estimates,
sure depends only on the state of the system, we have @c] This theorem, called Takens’ embedding theorem, as-
functional relationy(t)=h(x(t)), whereh is the measure- serts that if the attractor dimensionristhen for a complete
ment function relating to x. We now define the delay coor- understanding of the attractom2 1 dimensions in the em-
dinate vector y(t),y(t+7),y(t+27), ..., y(t+(m—1)7))  bedded space are sufficient. Further generalizai@a627

with time delayr, and propose that it is related x¢t) by assert that any embedding dimension larger than the box
counting attractor dimensiaisee Sec. V Bis sufficient, and
D(x(1)=(y(t),y(t+7), ... y(t+(m—1)7) in most cases the smallest integer greater than the correlation

dimension(see Sec. V Bis sufficient for a complete charac-
= (h&x(W).h(x(t+ 7)), ... .h(x(t+(m=1)7)). terization of the attractdi28]. Hence most of trl?e significant
(5 characteristics, dynamical and geometrical, of the original
system are carried over to the reconstructed phase space.
Takens[24] showed that for autonomous and purely deter-Mathematically speaking, the characteristics of the original
ministic systems[i.e., a system of differential equations phase space are topologically and metrically equivalent to its
&l ot=1(&(t)) in which f is not explicitly a function oft], mirror dynamical flow in the reconstructed phase space, i.e.,
the delay reconstruction magp, a bicontinuous differen- the orbits of the original phase space are transformed into
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orbits in the reconstructed phase space in such a way théte jth interval. Here too the optimal delay is that corre-
their sense of orientation is preserved. Further, topologicasponding to the first minimum or zero @f Another method
properties such as the number of significant eigenvalues, antd find a proper time lag is the space-time separation plot
dynamical and metrical properties such as Lyapunov expo30]. This procedure estimates the time lag for the system to
nents and different types of dimension measycesrelation free itself from the temporal correlations of points in phase
dimension, Lyapunov dimension, box counting dimensionspace6].

information dimension, et. are preservef25]. In view of

embedding theory, we can estimate the various dimensions B. Choosing the embedding dimensiom
and Lyapunov exponents, and perform reasonable predic- ) . i _ . _
tions of future events based on this mapping. The next crucial problem in nonlinear time-series analysis

is to fix the number of independent coordinates required to
reconstruct the attractor governing the dynamics of the sys-
tem. The usual procedure is the following: a valuenofs

A direct application of the embedding theorem in realassumed and the data embeddednimimensional space.
situations is impractical as it is valid only for an infinitely The volume of the resulting set is then determined by count-
long and noise-free time series of a dynamical system. ling the number ofm-dimensional cubes of size needed to
principle, there is no restriction on the choice of the timeenclose the set. The box counting dimension of the attractor
delay. In practice, however, proper choice of both time delays then given by
and embedding dimension are of great significance and the
information contained in a time-delay representation of real Do InN(e) g
data is greatly influenced by the choice of these embedding o 'Ln : ®)
parameters. Noise is usually of frequencies higher than those

of the inherent dynamics of the system, and therefore imq, practice,N(e) is determined for various embedding di-

poses a lower bound on the time delay; using a time delay,ensjons starting from unity, over a rangeeoff the plot of
smaller than the largest significant noise time period will|, N(e)/In(1/e) againste shows a plateau at approximately
result in artificially high dimension. Even in the absence ofiho same value for a sufficiently large range offor all
noise, choosing too small a time delay will illustrate only theembedding dimensions greater than a critical valye a
temporal correlation in the data, rather than its chaotic dys

. ; : . -~ YYgood approximation to the box counting dimension of the
namics. Using too large a time delay runs the risk of mlssm?é

A. Choosing the time delays

) 2 . > sgttractor ism, . In computing the box counting dimension of
genuine variations at smaller time scales. Thus, the optim

4 ) ; o n attractor, equal importance is given to all the cubes that
time delay is one for which the characteristics of the dynam-, g b g

) b dinth bedded q X enclose the data in phase space. However, for attractors hav-
ics observed in the embedded space are not due to noise aﬁ% a fractional dimension, certain regions in phase space are
temporal correlations of points, on the one hand, but th

) ) Yisited more frequently by the trajectory and hence greater
inherent dynamics of the system are not left out on the Othe(/veightage should be given to cubes in that region. Grass-

This can be quantified by using the autocorrelation fu”Ctiorberger[Sl] Grassberger and Procac®?], and others in-
troduced the generalized dimensiby which depends con-

A(s)=2, (Xn=X) (Xnss—X), (6)  tinuously onq as

1 . Inl(q,e)

which is a normalized measure of the linear correlation qul q||m n(le) "
T Me—o0 €

among successive values of a time sefieg)_, . Above,x

is the temporal mean of the time trace (1/N)=N_,x,. The

decay of the autocorrelation withis a direct way to deter-

mine the decorrelation lag tim¢he time needed for the sys- N(e)

tem to “forget” its initial conditions. '_rhe optimal time delgy 1(q,€)= 2 wl, (10)

can be taken as the value ¢fat which the autocorrelation i=1

function attains its first zerf29], or its first local minimum. i ) )
The time-delayed average mutual informatibiis also a ~ Where u; is the natural measure of cubeand the sum is

tool to determine a reasonable delay. A distinguishing featuréaken for all theN(e) cubes of sizes needed to enclose the

of T over the autocorrelation function is that it takes into attractor. Here the natural measure of cilie given by

account the nonlinear correlations in the data; it is given by

(€)

where

= im n(i!XOIT)
I=- pi,-<e>ln'°”'(§), @) T T
i Pip;

11

where 5(i,Xq,T) is the amount of time the orbit originating
wherep; is the probability that one data poiftbservation  from a typical pointx, spends in the cubé in the time
falls in theith interval for some partition on the real numbers interval O<t<T [33]. Of all the D, dimensions, the corre-
and pj;(s) is the joint probability that an observation falls lation dimensiorD, is easiest to compute from a time series.
into theith interval and the observation timdater falls into  Further simplification oD, from the above expression gives
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number of time-delay coordinates, one looks for the nearest
neighborxy(j) in d-dimensional embedded space of each
vectorxy(i), with respect to any metric. The distancgi,j)

. o . . between the vectors in-dimensional embedded space is
where C,(r) is the correlation integral for radius which 4 01 compared with the distancg. 4(i,j) if the data were

i - ~rD2 j imi . , . . .
obeys a scaling relatio@,(r)~r=2 in the limit r—0. [In  gmpeqded ing+1) dimensions. For instance, if th met-
general, for a self-similar structure, the correlation integral;. g usedyq.4(i,j) can be written in terms afy(i,j) as

Cq(e€) of order q satisfiesCq(€)~ €l 1Pa as e—0.] The
correlation integral depends on the embedding dimension
of the reconstructed phase space as

InCy(r)

Inr ’ (12

D2: ||m
r—0

ri (L) =rii,j)+[x(i+dr)—x(j+dn]? (14

5 N If rgc1(i,))/rg(i,j)>1x4()) is a false neighbor of4(i); the
Co(r,m)= r—IIx(i)=x(DD, cutoff value of the ratio in our calculations, above which the
2Ar.m) N(N_l)igl j;i-l (= I =x() point is taken to be a false neighbor, is 10. If only a small

(13)  fraction of the neighbors are falsg:can be considered to be
_ _ _ an embedding dimension for the dynamics of the attractor.
where ©(a)=1 if a>00(a)=0 if asO0x(t) is the Use of both the above methods of finding the dimension

m-dimensional vector of time-delay coordinates, & the  of an attractor together leads to a good estimate of the actual

length of the time series. The scaling expondrihcreases
with m and saturates to a final valie, for sufficiently large
embedding dimensiom, [25]. In general, it is difficult to
find a plateau region for a given value of Theoretically,

dimension of the attractor, but neither of them can replace
the other. Along with these methods, we used the principal
component analysis to find the number of principal compo-
nents(or significant eigenvaluggontributing to the dynam-

D, has to be determined as the radius of the hypersphereics of the system. We do not describe the procedure here, but

tends to 0 andn large. But in calculation small values of

refer the reader to Broomhead and K{i&$] for details. This

are blurred by noise and limitations on the accuracy of thenethod gives an upper bound to the number of independent
data and large values afare not considered due to practical coordinates required to reconstruct the attractor of the dy-
limitations. Practically, one finds a range, (ry) of r over  namical system. We also used some standard tools for the
which InCy(r,m)/Inr gives an approximate plateau region estimation of invariants of the dynamical system which we
with some tolerance: Am. explain at the appropriate places below.

For nonstochastic signals, the correlation dimension esti-
mate is unaffected by small variations in the time delay. On
the other hand, signals dominated by white noise will show
statistically significant changes in the correlation dimension We restrict our attention to neutrally buoyant suspensions,
for different embedding dimensions, rarely converging to awhere the densities of the suspended particles and the fluid
fixed estimate of the correlation dimension msincreases are equal. The initial configuration of the suspended spheres
(never converging for pure white nojsend small changes was generated by first arranging the particles in a regular
in time delay will affect the correlation dimension estimatearray and then applying small random displacements until a
significantly. In most cases, is the smallest integer larger uniform distribution is reached. The system is allowed to
thanD, [28]. When the exponert of the correlation integral evolve for about 5000 dimensionless time units and the ve-
for various embedding dimensions reveals a plateau at lowocity and stress fields are then recorded over the subsequent
values ofr and the plateau converges for increasinghere 95000 time units. We used the softwares Chaos Data Ana-
is strong evidence for a low dimensionality of the underlyinglyzer Professional Version 2.1 of the Academic Software Li-
dynamics of the system. Usually, the correlation dimensiorbrary of the American Physical Society, thsEAN Package
from a time series is compared with other dimension esti{7], and visual recurrence analygi87] for performing the
mates to ensure its veracity. In most cases it gives a gootgsts on the time series.
approximation to the number of equations required to model A frequency decomposition of the shear stress shows a
the system. Further, an accurate measurement of correlatidmoadband spectrurtiFig. 3), which is characteristic of both
dimension will reveal the possibility of a strange attractor if deterministic chaos and a linear stochastic pro¢88s39|.

D, is not an integer. The power spectrum shows an exponential decay with fre-
Another technique for finding the minimum number of quency, which again is common to deterministic chaos and
independent variables to describe the dynamics of the systelimear autocorrelated noise. Therefore, a complete character-
is the false-nearest-neighb@NN) method[34,35. The ba- ization of this behavior must be investigated by methods that
sic idea behind the method is that if an embedding dimensiogan distinguish between deterministic chaos and linear auto-

less than the actual dimension of the attractor is chosen, ¢orrelated nois€or a stochastic procesdn this paper we

will not unfold the true geometry of the attractor and thereuse both the surrogate data analysis method and the visual
will be self-intersections leading to false neighbors. For ex+ecurrence analysis method, which are described below, to
ample, if a sphere is embedded in two dimensions, the redifferentiate linear autocorrelated noig& a stochastic pro-
sulting structure will be a circular disk, and diametrically ces$ from deterministic chaos.

opposite points on the sphefi@ the direction of projection The autocorrelation function of the shear stress time series
will become false neighbors. To determine the sufficientconverges to a local minimum at a time lag of roughly 17

VI. RESULTS AND DISCUSSION
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FIG. 3. Power spectral density of the normal stregs vs fre- FIG. 4. Space-time separation plot of the normal steggsfor

guency(made dimensionless by scaling with the shear tatel) H=18 and¢=0.2. The lines are contours of probability densities
for H=18 and¢$=0.2. Exponential decay of the power with fre- 1/20, 2/20, 3/20, etdincreasing in upward directignfor the nor-
guency is clearly seen, which is characteristic of both chaotic andnal stress at dimensionless tire ty+ 6t, with € being different
linear stochastic signals. from that att=t,, averaged over atl,.

time steps(a time step is equal to one dimensionless timeggtimation of certain invariant characteristics of the time se-
unit). The average mutual information plot also showseg

roughly the same time delay. Along with these methods we
used the space-time separation Rfd] to determine an op-
timal time delay. The importance of this method lies in ex-
cluding temporal correlations of points in phase space. That In nonlinear time-series analysis, we are interested in
is, pairs of points which are measured within a short timecharacterizing the underlying attractor, a bounded limit set
span tend to be close in phase space and this will adversefgr typical initial conditions in some region of the phase
affect the computation of the correlation integral. We use thespace of the dynamical system. One of the parameters that
correlation integral to compute the effective dimension of thecharacterizes an attractor is its dimension, which can be re-
underlying dynamics which is in no way related to the close-garded as a measure of the amount of information necessary
ness of points in phase space due to temporal correlationo specify the position of a point on the attractor within a
The idea in a space-time separation plot is that in the preggiven accuracy. For an accurate estimation of the attractor
ence of temporal correlations the probability that a given paidimension, we the use principal component analysis, the
of points has a distance smaller thaoes not only depend false-nearest-neighbor method, and the Grassberger-
on € but also on the time that has elapsed between the twBrocaccia algorithm.
measurements. This interdependence can be detected by plot-We performed a principal component analy&ge Sec.
ting the number of pairs of points as a function of two vari-V B) on the normal and shear stresses for different particle
ables, namely the time separatiah and the spatial distance area fractions. In this analysis, the dimension of the covari-
€. In Fig. 4, contour lines are shown at the spatial distance ance matrixsee[36]) was chosen to be large enough that the
where for a given temporal separatidst, a fraction of significant eigenvalues did not vary much with the dimen-
1/20,2/20 . . . of pairs are found. We observe a saturation ofsion. We get five significant eigenvaluése., positive and
these contour lines abovkt=17. Hence this value can be greater than the noise flgofor ¢=0.2, between five and
regarded as a fair estimate of the decorrelation time whiclseven values for 02¢4<0.5, and above seven significant
will exclude the influence of successive points due to temeigenvalues fory>0.5. This is illustrated in Fig. 5, which
poral correlations. shows the eigenvalues obtained from a principal component
The estimation of certain invariants, viz., correlation di- analysis of the shear stress time series for three values of
mension, Lyapunov exponents, etc., requires a proper choicds the number of significant eigenvalues is an upper bound
of Theiler's window » [40], which provides guidelines for for the dimension of the attractp41,6], this is an indication
proper sampling of points from a time series of data. Theilethat the number of independent coordinates required to cap-
[40] suggested that all pairs of points whose time indicegure the characteristics of the system increases with
differ by less tharw may be ignored, where is approxi- The false-nearest-neighbor method, described in Sec.
mately equal to the product of time lag and embedding diV B, shows that the behavior of the attractor can be de-
mension. For the computation of the correlation dimensiongscribed by four or five independent coordinates as fractions
for instance, this requires the lower limit pin Eq. (13) to  of the false neighbors becomes very small at an embedding
be changed to+ w, and the factor multiplying the summa- dimension of 5(Fig. 6) when ¢<0.4. An estimate of the
tion to be replaced by (R)(N— w). Using the above infor- correlation dimension strengthens this conclusion. For an ac-
mation as a basis, we take Theiler’s window as 100 for theurate estimation of the correlation dimension, we used the

A. Low dimensionality of the attractor
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i FIG. 7. A “plateau” of InCy(r,m)/Inr in the region 0.2%r
. . . . <0.37 giving an approximate value of correlation dimen

FIG. 5. The eigenvalues; in decreasing order of magnitude for The cor?elati%n inte%rr)ettz(r,m) was determined for the timeg?é]ries

the shear stress, for H=18. of the normal stress,,, for H=18 and¢=0.2. Though this test is
not definitive, as there are local peaks within the plateau region, the

Grassberger-Procaccia algoritH82]. We took 95000 data plateau converges for higher embedding dimension, indicating evi-
points of the time series of the normal and shear stressedence for low dimensionality of the attractor.
after deleting the initial transients, and computed the corre- .
lation integral for embedding dimensions ranging from 1 tomal and shear stresses for area fractignsetween 0.2 and

25 with a time delayr=17. The plot in Fig. 7 shows that the 0.6. We observe that for any given particle concentration the

curves for high embedding dimensions converge in the rang(éorrelatlon dimension estimates from the normal and shear

0.27<r<0.37, where IIC,(r,m)/Inr is approximately con- stress time series are quite close. It is also apparent that the

stant, indicating the existence of a low-dimensional attractor(.:o”ela_tlon (_:Ilmen_5|on increases with area fract|on. .

However, the presence of local peaks in this region indicate In hlg_h—dlmensmnal systems, the prgdmt_mn . su.cceedllng
the absence of clear correlation, and hence this method is nafta points is a robust method for estimating th_e d|m¢n3|on
definitive in showing low dimensionality. We note, however, 0 .the underly[ng attractor. The' meeddmg dlmenspn at
that this figure is typical of many in the literature. Moreover, which th_e prec_chtlon error is a minimum is a good estimate
the principal component analysis, the l‘alse—nearest-neighb&I the dimension of the attractor. We used the locally con-

method, the nonlinear prediction meth@discussed beloyy Stant predictor met_ho(kee Seq. Viifor predictingone-step
and the presence of structure in the three-dimensional phas@i€@dthe successive fluctuations of the stresses. We used

space plot all give strong indications of low dimensionality. 3000 data pomts in the time trace of the shegr or normal
In all the cases we obtained a fractional correlation dimenStr€Ss 0 determine the structure of the underlying attractor,

sion, indicating the existence of a low-dimensional strangeand predicted the evolution for 35 succeeding dimensionless

attractor. The attractor dimension determined from the “pIa—t'me steps. We then computed the normalized mean-square

teau” region in Fig. 7 yields a correlation dimension betweent 0" (NMSE) of prediction. We observed that for an area

2 and 4. Table | shows the correlation dimension of the norjraction less than 0.4, the NMSE is minimum when the em-

bedding dimension is 3 or 4. All these tests put together
indicate strong evidence for the low dimensionality of the

=02 —— underlying attractor.
@ 09 ¢f(0)~i T To study the influence of the Couette gdn the invari-
é os | ¢=0. | ant properties, we analyzed the time series of the stress com-
) . . . . .
‘S 07} . 7 TABLE I. Correlation dimensiorD, determined from the time
ﬁ 06 | ] series ofo,, ando,, for H=18 and a range of the area fractign
% X Note that the estimates @, from the two stress components are
o 05 F .
— ,‘ quite close, and are much smaller than the number of degrees of
g 0.4 | "'.\ ] freedom N, . Also note the increase iD, with particle concen-
S 03} | tration ¢.
0.2
H D,
01} N o ] ¢ Np Tyx Tyy
°, 5 3 4 5 6 7 0.2 21 3.2 3.4
embedding dimension m 0.4 42 4.1 42
0.5 48 4.8 4.3
FIG. 6. Fraction of false nearest neighbors as a function of the 0.6 63 55 5.5

embedding dimensiom for the o, time series, foH=18.
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TABLE Il. Correlation dimension determined from time series  TABLE lll. Correlation dimension determined from time series
of oy, and o, for different Couette gapdid=14,18, and 30 for of o, and oy, for different ranges of the interparticle repulsive
¢=0.2. There is a slight decreasing trenddn with increasingH. force, =10, 100, and 100Qwith Fyux=0.01). The data are for
H=18 and¢=0.4, with the number of particles,=43. Note that

D, D, is relatively insensitive to changes in
H Np Oyx Oyy
D,
14 13 3.7 3.8 P yx oy
18 21 3.2 3.4
30 57 3.0 3.0 10 4.3 4.2
100 4.1 4.2
1000 4.2 4.1

ponents forH =14,18, and 30. Table Il gives the correlation

dimension for an area fractioth=0.2. We observe a slight dcular i tochastic d ics. H th sis of
decrease in the correlation dimension as the Couette gap jparticular finear stochastic dynamics. Hence, the analysis o
time series has to distinguish between linear stochastic and

creases. This is in agreement with the trend of the principaz terministic d ics. Wi d both te dat Vsi
componentgeigenvaluesfor the above data, shown in Fig. eterministic dynamics. We used both surrogate data analysis

8. We also determined the correlation dimension for diﬁerenf’md the'wsga! recurrence analy$MRA) method [37] to .
values ofu, the range of the repulsive interparticle interac-make this d'S“”C“Of?- According to _surrogate datg ?‘”a'ys's
tion (keepir;gF 11=0.01) for a Couette gap ¢ =18, and a theory, the geometrical and dynamical characteristics of a
particle concegtratioms=0.4. These results are tat;ulated in tim_e series must be compared with those of stochgstic signa_ls
Table Ill; it is apparent that there is no significant variation inWh'.Ch have the_sgme power spectrum and amphtude Q|str|—
the correlation dimension witj, but_lon as the or!glnal data]. Qne surrogate_of a tlme series
The second columns in Tablés | and Il give the number O]WhICh tests for linear stochastic processes is obtained by ran-

particlesN., in the simulations; the number of degrees Ofdomizing the phases of the Fourier coefficients of the time
freedom i P:N WO Cart ! dinates determine th series. One takes an ensemble of surrogates of the time series
reedom is N, as two Cartesian coordinates determine

position, and" hence all other properties, for each particleeto compare with the original time series. In order to distin-

ComparingN, andD,, it is clear that the apparent dimension guish the nonlinear deterministic process from a linear sto-
P 2 chastic process, we use a discriminating st&idefined by

of the system is always far smaller than the number of de-

grees of freedom. —

Q= :U«ob; Msur, (15)

B. Deterministic nature of the system suf

A finite length time series with a broadband power specWhere u,s is a characteristic measured from the original
trum may be a realization of a stochastic process governelime seriesug, is the average value of the same character-
by an autoregressive moving average model or of a lowistic measured from the ensemble of surrogates, aggis
dimensional deterministic chaotic proce§42]. Further, the standard deviation of the characteristic for the ensemble
some geometrical or dynamical characteristiosv correla-  of surrogates. We computed the correlation dimension of ten
tion dimension or positive Lyapunov exponent, etf the  sets of such phase-shuffled time series for the shear and nor-
low-dimensional chaotic dynamics can be observed froninal stresses. We found that $@<15, i.e., the correlation

dimension of the original time series differs by 10 to 15

standard deviations from the mean correlation dimension of
§+ the ensemble of surrogates, clearly indicating that the differ-
0 v ence is statistically significant. We also used the VRA
] method to determine the presence of structure in the stress
§ fluctuations. The importance of the recurrence plot, one of
the tools available in the VRA, is that the presence of struc-
ture can be visualized by means of color graphics. Once the
dynamical system is reconstructed by means of delay coor-
1 dinates, the distance between all pairs of vectdig and
y X(j) is computed and various color codes are assigned to
different distances. In a two-dimensional recurrence plot, a
color code at thei(j) position specifies the distance between
the vectorsx(i) and x(j). For random signals, a uniform
distribution of colors over the entire plane is obtained and for
deterministic signals we obtain coherent structures in the re-
currence plot. This method demonstrated the existence of a

FIG. 8. The eigenvalues in decreasing order of magnitude for coherent structure in the stress fluctuations in the suspension
the shear stress,, for Couette gapdi=14,18, and 30 ayp  [Fig. A@)]. We also computed the spatio-temporal entropy
=0.2. for the stress. This quantity compares the distribution of col-
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R gence with time of trajectories from arbitrarily close initial
14000 e : : | conditions. An aperiodic bounded system having a sensitive
: : dependence on initial conditions is termed a chaotic system.
To determine the existence of such behavior in our system,
we computed the stress for two slightly different initial dis-
tribution of particles(the position of a pair of particles dif-
fered slightly in the two initial configurationsFigure 1Qa)
shows the rapid divergence of the shear stress for the two
initial configurations. The difference between the shear
stresses of the two trajectories increases exponenfiaidy
10(b)] for smallt. Computing this exponential divergence of
arbitrarily close trajectories over a time interval is of great
significance in analyzing a time series obtained from a dy-

10000

6000 —

(a) 2000 6000 j 10000 14000 namical system. For a comprehensive characterization of the
underlying attractor, we computed the maximum Lyapunov
x(t =37 exponent (computation of the complete spectrum of

Lyapunov exponents is tedious and requires a large amount
of datg, which measures the average rate of divergence or
convergence of nearby orbits. The existence of a positive
Lyapunov exponent is strong evidence for the chaotic nature
of the system.

Several methods have been reported in the literature for
efficient and accurate estimation of Lyapunov exponents, and
we use the method developed by Kapb]. For computing
0015 x(r-21) the maximum Lyapunov exponent, we consider the represen-
(b) Xt —-1) b:05 tation of the time-series data as a trajectory in the embedding

space. Then we construct a neighborhéfdwith radiusr
FIG. 9. (8) Recurrence plot for the dimensionless shear stresaind Cente"(no in the embedded space. bgtbe a very close

oy for H=18 and ¢=0.2. The definite structure in the plot is return of the previouslv visited point. : then A~=x. —x
apparent; data with white noise yield a uniform distribution of P y P m”O' 07 %ng  “n

color. The axes labelsandj are index numbers of the data points in IS @ Small perturbation. If one finds that its future
the time series. The color bar on the right indicates the distance™ Xny+t ™ Xn+t IS gIven by|A{|~AqeM, then\ is the maxi-
color mapping, with white representing zero distance and blacknal Lyapunov exponent. Using the Kantz methd@,6], we
representing the largest distand®. Phase-space plot of the dimen- compute

sionless normal stress,,, for H=18,$=0.2, andr=17 .

S(r,m,An)
ors over the entire recurrence plot with the distribution of N
colors over each diagonal ling i+ const) of the recur- :i 2 In 1 E X —x
rence plot. The higher the combined differendd8] be- Nng=1 | (U] x, Ty ) Mot AN “ntAan
tween the global distribution and the distributions over the
individual diagonal lines, the more structured the image is. In (16)

physical terms, this compares the distribution of distances

between all pairs of vectors in the reconstructed state spager a point Xn, Of the time series in the embedded space,
with t.he _d|s'gr|but|on of @stances between dlfferer)t Orb'tswhereu(xn) is the neighborhood of, with diameterr. If
evolving in time (for details, seg44]). For random signals S A o i v withh Of A ith

the value of spatio-temporal entropy will be close to 100%.d(r’?.1’ In)l mcrfease”sd.lneary Wi | n o:hsma n, wi d

and for deterministic signals the value will be considerablyI entical s Op?al ora 'mﬁﬂs'ort': arlger an Eorrtmlzc an

less. The calculated values of the spatio-temporal entropy foflor a reaso?ah € range QI Len € siope cagn € Ha en ﬁs an
the shear and normal stresses were nearly zero, showing p f_ft|m_ate of the maximal Lyapunov exponent. Here tdef
fect structure in the data. We observed definite structure iff'ccUVe €xpansion rate over a time span Is averaged for a
the phase-space plot of the stress componEFi 9(b)]. range of valu.es ofy. Figure 11 shpw§(r,m,4n) increas-
The predictability of the signal is also strong evidence for thedd linearly withAn, and the slope is roughly independent of
deterministic nature of the system. From the above tests, e embedding dimension if it is greater than 4. The lines in
conclude that the fluctuations in the normal and sheaf'd: 11 are form=4,5, and for values of in the range 5

75 3 . .
stresses are due to a low-dimensional deterministic process< 0 ~ 10 10°°. Our estimate of the maximum Lyapunov
exponent from this figure is approximately 0.43.

The maximum Lyapunov exponents computed from the
time traces of the normal and shear stresses, for a particle

A striking behavior of some dynamical systems is theirarea fraction in the range 0.05-0.5, are tabulated in Table IV.
sensitive dependence on initial conditions, i.e., the diverThe general trend of a rise in the maximum Lyapunov expo-

C. Chaaotic nature of the system
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-0.06 Further evidence of chaos is provided by the one-step-
ahead and multistep-ahead predictions of successive fluctua-
-0.07 tions of the stressgsee Sec. VIl While the one-step-ahead
successive prediction is quite accurate up to nearly 35 time
-0.08 steps in the futurg¢Fig. 12b)], the multistep-ahead predic-
tion diverges from the actual time trace after 3—5 time units
Tyx 409 [Fig. 12a)]. This apparent distinction between the two pre-
dictions is a clear indication of the sensitive dependence on
0.1 initial conditions of nearby trajectories. Lastly, the power
spectrum of the time series of the normal and shear stresses
0.11 also shows exponential decay, indicating the chaotic nature
of the signal(Fig. 3.
0.12 . , , , . . . , Given all the above evidence, we conclude that the attrac-
20 30 40 50 60 70 8 9 100 tor underlying the fluctuations in the stress has a fractional
(@) t correlation dimension, and is a consequence of low-
as dimensional chaotic dynamics.
4 VII. PREDICTION OF SUCCESSIVE FLUCTUATIONS
S; As mentioned in Sec. Ill, an important feature of chaotic
| 45 systems is their exponential sensitivity to initial conditions:
= the average error made when forecasting the outcome of a
% -5 future measurement increases exponentially with time. The
- length of the period over which accurate short-term predic-
-5.5 tions of the successive fluctuations of the signal are possible
is determined by the accuracy of the initial conditions and
8 estimate of the Lyapunov exponent. We use local models to
predict the one-step and multistep procedures. That is, in-
6.5 s . - s stead of fitting one complex model with many coefficients to
15 16 17 18 19 20 the entire data set, we fit many simple modétswv-order
(®) t polynomialg to small portions of the data set depending on

the geometry of the local neighborhood of the dynamical
system. The general procedure is the following: the last

rithm of the differencex(t) —y(t) against dimensionless tinme known state of the system, represented by a vestor

showing clearly the exponential increase for smah the differ- = (X(N).x(n+7), ... x(n+(m—1)7)), is determined,
ence between the stresses for the two trajectoriéa)jrindicating wheremis the embedding dimension ai?rds the time delay.
chaos. Then p close stategusually nearest neighbors &) of the

system that have occurred in the past are found, by comput-

nent with ¢ is apparent. This increase in the Lyapunov ex.ing their distances _from. The idea t.hen is to fit a map yvhich
ponent is strong indication of many-particle interactions€Xtrapolatesc and itsp nearest neighbors to determine the
leading to chaotic behavior. We obtained numerical evidenc8€Xt values. Using this map, an approximate value(f

for the presence of a chaotic attractor in the system even fof 1) can be obtained. We use both the one-step- and
the smallest area fraction of particles we considered. We als@Ultistep-ahead prediction methods. In the one-step-ahead
computed the entropy of the system, which indicates the cha2rédiction, after each step in the future is predicted, the ac-
otic nature of the system, defined in the following manner: iftual value is utilized for the next one-step prediction. In con-

the system is embedded m-dimensional space with delay rast the multistep prediction is based only on the inifial
7, then them dependence of the correlation integ@y(r,m) states. The normalized mean-squared €iXdSE), referred

of orderq for largem can be expressd@3,32,29 as to in Sec. VI A, is computed by comparing the mean-square
error (between data and predictipof the above method with

the MSE of the unconditional mean predictor meth@d
trivial method which predicts the average of the observed
values as the subsequent valuks stated in Sec. VI A, we
asr —0 andm— o, whereh, is called thegth-order entropy. ~ observed that the NMSE is minimum whemis between 3
Computing the entropy fog=2 is the easiest, and it can be and 4 for¢ less than 0.4, roughly 5 fop between 0.4 and
performed along with the computation of the correlation di-0.5, and is above 5 fog greater than 0.5.

mensionD,. Our calculations show that the entropy, which  From the time series of the stresses up to a given tgne

is always less than or equal to the sum of the positiveve predicted their subsequent evolutiore., the multistep
Lyapunov exponents, is positive for all particle concentra-prediction using the locally constant predictén VRA). A
tions. good prediction is possible only up te-ty+3, as shown in

FIG. 10. Divergence of close trajectorigét) andy(t) of the
shear stress, for H=18 and¢$=0.2. (b) is the plot of the loga-

Cq(r,m)=a(m)e™ (@~ Hhamy (a=1)Dq 17)
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FIG. 11. The functionS(r,m,An) [see Eqg.(16)] vs An for / /’\
various embedding dimensions. The slope is approximately 0.43 / \ \ / \
(independent ofm) for m=4. Data are for the dimensionless nor- 0 \Z N
mal stressr,, for H=18 and¢=0.2. Oyx U \VJ;\ ﬁ,
Fig. 12a). In contrast, the one-step-ahead predic{i®n] of o1 \ /
successive fluctuations of the stress is quite accurate for al | — Actual | \ /
time [Fig. 12b)], indicating the deterministic nature of the | —— Predicted | \\}
system.
_0.0213491 13505 13512 13533 13547
VIIl. CROSS PREDICTION OF THE TIME SERIES (b) ‘

Cross prediction of one time series from the time series of FIG. 12. Multistep(a) and one-stejb) predictions of the normal
another related variable was introduced recently by Abarstresso,, for H=18 and¢=0.2. Note the close agreement of the
banelet al. [46]. This technique has potential application in one-step prediction with the actual time trace.
situations where the measurement of one quantity is difficult

or eXpenSive, while the measurement of a related variable iﬁ1e driving System Correspond to two nearby states in the
easy or ineXpenSive. In such a case, simultaneous meaSUIiﬁ-,ase space of the response System_ This property of a pair
ments of both variables need to be made for a baseline P&f such Systems can be characterized by the mutual false-
riod, and then the easily measured variable can be used Hearest-neighbordIFNN) parametef34]. For systems pre-
predict the other. The cross prediction of a sigfrasponse  serving this identity of neighbors in state space, the value of
signa) y(t) from another signaldrive signal x(t) implies  the parameter will be of the order of unity. We computed that
the existence of a functional relatioW such thaty(t)  the MFNN for the shear and normal stresses is close to unity.
=W (x(t)). One significance of this technique is that the pre-we used the nearest-neighbor metti@fito predict the nor-
diction of one variable from another can be made withouimal stress from the shear stress time series, and the results
knowing the properties of. When the phase-space points for ¢=0.4 are shown in Fig. 13.
of the driving and response systems are connected by such a
functional relationV, two nearby states in the phase space of
IX. DISCUSSION

TABLE IV. The maximum Lyapunov exponent for the,, and
oy time series, forlH =18 and various particle concentratioss
The Lyapunov exponent increases withimplying that the system
is more chaotic when the particle concentration is increased.

We have analyzed, using the tools of nonlinear dynamics
and chaos theory, the fluctuations in the shear and normal
stresses developed when a Stokesian suspension is subjected
to simple shear flow. We have found numerical evidence for
N the existence of a low-dimensional chaotic attractor for par-
ticle area fractionp in the range 0.05-0.6. We have used this

4 Ty 7y information about the underlying structure in the fluctuations
0.05 0.25 0.22 to make short-range predictions of the shear and normal
0.1 0.33 0.18 stresses, and cross predictions of one component of the stress
0.2 0.42 0.34 with knowledge of the other, with significant success. The
0.3 0.42 0.35 rise in the correlation dimension and Lyapunov exponent
0.4 0.43 0.42 with ¢ gives a clear indication of the influence of particle
05 0.49 0.45 interactions on the chaotic response of the suspension. The

existence of a low-dimensional chaotic attractor underlying
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the fluctuations opens up the possibility of technological ap- 0.02 -

plications such as chaos control to temper the fluctuations. 0015 | pregicéggcllj: |
For non-Brownian Stokesian suspensions, the instanta ' B, ox ‘
neous value of the stress is related to the instantaneous sep 001 FY & R #i 4 X . .
ration between particles, i.e., their configuration. The evolu- bl ' »
tion of then-particle configuration distribution functioi,(r) 0.005 kg .. f
is governed by the Smoluchowski equatif®l, which re- 9w ot
duces to a balance between accumulation and advection i ; ,
the absence of Brownian motion, -0.005 I R AT . i
0.01 | S : :
of, < -0.015 | ¥ L
—+ >V, (U,f)=0. (18
gt a=1 -0.02 - - -
300 350 400 450 500

t

If the velocitiesU,, are independent df,, it is clear that Eq.
(18) yields a fixed point forf,. This was the basic assump-
tion of Batchelor and Greef8] and Brady and Morri9].
However, for bounded shear flows of the kind considered in o _ )
this work, and those one usually encounters in practice, thihe vorticity of the flow, and the particles in the cluster are
velocities are determined by the local viscosity of the susPulled apart in the extension quadrant. The rate of formation
pension, which in turn is a function of the configuration. and breakage of the clusters, which determines the frequency
There is hence a coupling between Ef8) and the equa- Of the stress fluctuations, is determined by the local number
tions of motion of the suspension. The nonlinearity in thedensity and mobility of clusters, and one therefore gets a
coupling in Eqg.(18) allows the possibility of chaotic varia- range of frequencies, as shown in Fig. 3. We also note both
tion of the microstructure and therefore the stress, as is evihe shear stress and the normal stress fluctuations have simi-
dent from our results. lar correlation dimensions and maximum Lyapunov expo-
For large samples and over long time scales, one intunent. Since both the shear stress and the normal stress are
itively expects that the evolution of the stress will be cap-determined by an appropriate function of the microstructure,
tured by a hydrodynamic description, an expectation that igur results indicate that the dynamics of the microstructure is
in agreement W|th our Observation Of |OW dimensionality Of governed by a |0w_dimensional attractor having approxi_
the attractor. However, we must emphasize that this conclumate|y the same correlation dimension and maximum
sion is nota priori ob_wous or ewde_nt: a suspension of mac- Lyapunov exponent.
roscopic non-Brownian particles differs in a significant way Comparing our simulations to a typical globally coupled

fror:] bmotlr(]ecutlar fIU|dt|n f[ha;ththere tls noTlrr:hgrent tm&e icalemap lattice, we note that the relative particle positions in our
(set by the temperaturén the system. The imposed shear simulations correspond to the values attained by individual

rate, Wh'Ch IS thg time scale of macroscopic motion, 1S thechaotic oscillators in a coupled map lattice, and the coupling
only time scale in the problem and, therefore, there is n

separation of time scales normally observed in molecula etween any two particles is a chaotic function of the differ-

systems. In other words, the frequency of fluctuations in th&nce In positions between any two particles. In a coupled

stress scale is the imposed shear rate. Thus, low dimensiof?@P lattice sense, this would correspond to a globally

ality is an interesting observation we make, rather than £°uPled map lattice where the coupling is calculated by sum-
foregone conclusion: even at the pair-interaction level, théning up a chaotic function of the difference in values at any
position distribution functiorf, is a field which in the dy- instant between the oscillatofsarticles taken pairwise. Our
namical sense is an infinite-dimensional quantity. Our obsersystem thus represents a generalization of a typical globally
vation of low dimensionality of the stress fluctuations im- and democratically coupled map lattice. This result may thus
plies that only a fewbetween four and sjxmoments of the have significant implications for the theory of coupled map
position distribution function contribute to the stress fluctua-lattices.
tions. This appears to be an important and far-reaching result,
as the task of connecting the microstructure to rheology is
then much easier if we knew which of the moments of the ACKNOWLEDGMENTS
former were the important ones and how to compute them. . o
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obtained if we recognize that large fluctuations in the stres§ional Research laboratorfCSIR), Trivandrum, India for
arise from the formation and breakage of clusters of mangonstant encouragement. Financial support from DST, New
particles that sometimes span the distance between tHeelhi Grant Nos. Il $90)/95-ET and SP/S2/E01/98 is ac-
bounding walls. In simple shear, for instance, clusters formknowledged. We thank Al Farook Muhammed Ridha and
in the compression quadrant where hydrodynamic force3ito Paul for help with the figures. J.D. thanks CSIR, India
squeeze particles together. The clusters are then rotated fyr financial support.

FIG. 13. Cross prediction of the normal stresg, from the
shear stress, for suspension withp=0.4 andH=18.
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