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Stress fluctuations in sheared Stokesian suspensions
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We report an analysis, using the tools of nonlinear dynamics and chaos theory, of the fluctuations in the
stress determined from simulations of shear flow of Stokesian suspensions. The simulations are for shear
between plane parallel walls of a suspension of rigid identical spheres in a Newtonian fluid, over a range of
particle concentration. By analyzing the time series of the stress, we find that the dynamics underlying these
fluctuations is deterministic, low-dimensional, and chaotic. We use the dynamic and metric invariants of the
underlying dynamics as a means of characterizing suspension behavior. The dimension of the chaotic attractor
increases with particle concentration, indicating the increasing influence of multiple-body interactions on the
rheology of the suspension with rise in particle concentration. We use our analysis to make accurate predictions
of the short-term evolution of a stress component from its preceding time series, and predict the evolution of
one component of the stress using the time series of another. We comment on the physical origin of the chaotic
stress fluctuations, and on the implications of our results on the relation between the microstructure and the
stress.

DOI: 10.1103/PhysRevE.66.021409 PACS number~s!: 82.70.Kj, 05.45.Ac, 05.45.Tp
a
r-
-
a

cle

us
re
te
cr
on
us
vi
a
ic

an
sp

io
g
on
on
io
s

ly

e

on
y-
on
t is

ian
ing
eir
gi-
,
ipal
udy-
of

the

r

-
ent.
sis
n

ear.
ct of

i-
ctly
hy-
and
ion

ing
ar-
I. INTRODUCTION

Rheological properties of suspensions are examples
spatial averages over a large number of elements, which
individually chaotically varying~here the suspended pa
ticles exhibit chaotic motion!, showing a variety of interest
ing behavior. The bulk stress in a suspension of small p
ticles in a fluid depends on many factors, of which parti
concentration, the Stokes number~which characterizes the
importance of particle inertia in comparison with visco
forces!, colloidal and Brownian forces, and flow type a
important. The dynamic interaction of these factors de
mines the suspension microstructure, from which the ma
scopic rheological properties follow. Particulate suspensi
are, of course, encountered frequently in a variety of ind
trial processes, and understanding their rheology can pro
significant commercial benefit. Moreover, suspensions
useful models of spatially extended chaotic systems, wh
can be analyzed both theoretically and experimentally,
their rheological properties represent easily measurable
tial averages over the positions of all the particles.

It is well known that the stress in a particulate suspens
exhibits strong fluctuations about a well-defined avera
The fluctuations increase in magnitude with the particle c
centration and are easily measurable in experiments, but
the temporal average is usually reported. Stress fluctuat
in suspension flows have been observed in the simulation
pressure-driven flows and simple shear flow@1,2#. However,
we are unaware of any study that has attempted to ana
these fluctuations.

It is now widely recognized that the fluctuations in th
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properties of nonlinear systems convey useful information
their dynamics. The utilization of the tools of nonlinear d
namics has led to the possibility of uncovering informati
about the underlying dynamics of a system whose outpu
in the form of a fluctuating time series@3–5#. Our broad
objectives in this work are to see whether these tools@6,7#,
when applied to fluctuations in the bulk stress of Stokes
suspensions, can capture information about their underly
dynamics, and hence lead to a way of characterizing th
behavior by proper estimates of the dynamical and topolo
cal ~geometrical! invariants of the fluctuating time series
such as dimension estimates, Lyapunov exponents, princ
eigenvalues, etc. Some of the possible advantages of st
ing fluctuations in rheological properties using the tools
nonlinear dynamics and chaos theory are~i! the identification
of the existence of a low-dimensional attractor leading to
possibility of intelligent chaos control;~ii ! accurate short-
range predictions of fluctuations;~iii ! predicting fluctuations
in properties that are difficult to measure~such as the shea
stress! from those that are easy to measure~such as the nor-
mal stress on a boundary!; and~iv! using the invariant mea
sures of the dynamics in design and scale-up of equipm

From a fundamental viewpoint, we expect that an analy
of the stress fluctuations will provide useful information o
the microstructure, or arrangement of particles during sh
For Stokesian suspensions, the stress is simply a produ
the fluid viscosity, the shear rate, and a function of the m
crostructure. Hence, fluctuations in the stress reflect dire
fluctuations in the microstructure. For dilute suspensions,
drodynamic interactions may be assumed to be pairwise,
the stress is therefore determined by the pair distribut
function. Batchelor and Green@8# determined analytically
the steady-state pair distribution function for pure strain
flow assuming only hydrodynamic interactions between p
ticles, and thereby computed theO(f2) correction to the
©2002 The American Physical Society09-1
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suspension viscosity. More recently, Brady and Morris@9#
determined the pair distribution function for shear flow for
weakly Brownian suspension with a repulsive interparti
force in addition to the hydrodynamics. They found that t
repulsive interaction breaks the fore-aft symmetry of the p
distribution function, and therefore leads to finite norm
stress differences in the suspension. Both these studies
sidered unbounded flows for which there is a tim
independent steady state in the microstructure for dilute
pensions. In the concluding section of this paper,
comment on the origin of fluctuations in the microstructu
and the implications of our results on the relation betwe
stress and microstructure.

In this paper, we report results obtained from a detai
analysis of the fluctuations of the stresses of a non-Brown
suspension of spheres in simple shear flow, for a rang
particle concentration and Couette gap. We present num
cal evidence for the existence of a low-dimensional cha
attractor in the rheological properties. This indicates that
fluctuations of the rheology arise from low-dimensional d
terministic dynamics. We use this information to predict su
cessive fluctuations of the stress from the preceding fluc
tions. We also use this to perform a cross prediction of
time series of one stress component from the time serie
another, and indicate the potential of this approach. We
that the invariant measures such as the correlation dim
sion, Lyapunov exponent, etc., that characterize the fluc
tions change with rise in concentration, suggesting chan
in the microstructure with increasing concentration. The c
relation dimension for the normal and shear stresses is
proximately the same for a constant area fraction of partic
and we also observed that the values of the maxim
Lyapunov exponents for different stress components
roughly the same for a fixed particle concentration. From
results we draw interesting conclusions on the relation
tween the microstructure and rheology of the suspension

II. RHEOLOGY OF SUSPENSIONS

Determination of the macroscopic properties of susp
sions from the fluid mechanics around the particles or
nated from Einstein’s celebrated work@10#, in which he con-
sidered the dilute limit where particle interactions are abs
Batchelor and Green@8# derived theO(f2) contribution to
the viscosity,f being the particle volume fraction, resultin
from binary particle interactions. Determining the bulk stre
analytically at higher concentrations has not been poss
as it requires computation of many-body hydrodynamic
teractions as well as knowledge of the statistics of the p
tion distribution of particles. A large number of studies ha
examined the shear viscosity of suspensions either by ex
mentation or numerical simulations, with the implicit a
sumption that their behavior is Newtonian. Recently, Bra
and Morris @9# argued that the presence of a nonhydrod
namic interaction force, however small, results in no
Newtonian effects such as normal stress differences. Tho
it is not clear that nonhydrodynamic forces are necess
normal stress differences have been measured experimen
in non-Brownian suspensions by Gadala-Maria@11#, Zarraga
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et al. @12#, and Singh and Nott@13#, and in numerical simu-
lations by Singh and Nott@2#.

The studies cited above do not address the issue of fl
tuations in the stress, but attempt to determine the time
space averaged bulk stress in the suspension for a presc
flow field ~Singh and Nott@2# have commented on the fluc
tuations, but have not analyzed them!. From a microstruc-
tural viewpoint, fluctuations in the stress are caused by te
poral changes in the microstructure, which in turn arise fr
two sources:~i! The chaotic motion of individual particles in
the suspension, and~ii ! fluctuations in the spatially average
microstructure due to a coupling between its evolution a
the flow. The former exists even in molecular systems, bu
characteristic time scale is so small that it is unimportan
the hydrodynamic sense. In suspension flows, the only t
scale is that imposed by the shear rate, and therefore
effects of the two mechanisms listed above are indistingu
able. The important point is that these fluctuations have
been studied, and it is our belief that examining the
through the conceptual lens of nonlinear dynamics would
of significant benefit.

III. IMPLICATIONS OF CHAOS THEORY

Prior to the development of methods of analysis for no
linear systems, any irregularly varying data were assume
either be not amenable to analysis in terms of determini
models or to require a very complicated model. The dem
stration that simple deterministic models can lead to com
cated and irregular, or chaotic, behavior opened up the p
sibility of analyzing such data using deterministic mode
Chaos is a phenomenon that has been found in many ph
cal systems and has been confirmed both theoretically
experimentally. Chaos in a dynamical system is essenti
characterized by the exponential divergence of initially ad
cent trajectories as the system evolves in time. Manife
tions of chaos involve a wide range of systems, such as
chanical, electrical, hydrodynamic, and biological process
to name a few. Scientists and engineers have begun to ap
ciate the advantages of designing devices to exploit, ra
than disregard, nonlinearity and chaos. Understanding ch
offers the possibility of control over some complex and e
sive processes@14,15#. One important application wher
chaos theory has been shown to be beneficial is in the un
standing and exploitation of fluid mixing@16#. In this case, a
combination of chaos theory, fluid mechanics, and transp
phenomena has produced a general framework that now
be used in a variety of practical situations@17#.

IV. SIMULATION METHOD

We confine our study to non-Brownian suspensions in
regime of vanishingly small Reynolds number, Rp

[rġa2/h. Herer and h are the density and viscosity, re
spectively, of the fluid,a is the radius of the suspended pa
ticles, andġ is the imposed shear rate.

For an accurate determination of the dynamics of s
pended particles, and thereby the bulk properties of the
pension, the many-body hydrodynamic interactions betw
9-2
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STRESS FLUCTUATIONS IN SHEARED STOKESIAN . . . PHYSICAL REVIEW E66, 021409 ~2002!
particles must be computed correctly. This is accomplis
by the Stokesian dynamics technique@18#, which computes
particle interactions as a sum of the far- and near-field
drodynamic interactions in a consistent and efficient man
Brady et al. @19# developed a method for simulating an in
nite suspension of hydrodynamically interacting particles,
periodically replicating a finite number of particles throug
out space. The lattice summation is carried out using
method of Ewald, to accelerate the convergence. For a
tailed description of the above procedure, the reader is
ferred to Refs.@19–21#.

Most studies that have employed Stokesian dynam
have only investigated unbounded uniform shear, ignor
the effect of boundaries. In realistic situations, flow is
either by the motion of the confining boundaries or driven
a pressure gradient, and the resulting dynamics can be q
different from that of unbounded systems. The impermea
walls alter the microstructure~i.e., the local arrangement o
particles! near them, thereby altering the bulk properties.

Durlofsky et al. @20# were the first to incorporate the e
fect of plane boundaries in Stokesian dynamics simulatio
they discretized the walls into patches, and accounted
interactions between the suspended spheres and the pa
However, they computed the interactions between sph
~or patches! far apart using a simplistic, mean-field, a
proach. Nott and Brady@1# computed the far-field interac
tions correctly, but approximated the wall as a planar latt
of spheres, creating a ‘‘bumpy’’ wall. To simulate plane wa
more accurately, Singh and Nott@2# modified the procedure
of Nott and Brady@1# by using the exact sphere-wall resi
tances while computing the near-field interactions, but u
the bumpy-wall model for computing the far-field intera
tions. To simulate fully developed plane Couette flow, th
introduced a layer of pure fluid adjacent to the layer of s
pension in the master cell, which was then replicated p
odically in the three directions. In this work, we follow ex
actly the procedure of Singh and Nott@2#; we briefly outline
the simulation procedure below, and refer to their paper fo
full description.

The master cell~see Fig. 1!, containing a finite number o
particles, is replicated periodically to achieve a suspens
layer of infinite extent in the flow and vorticity directions
The velocities of the walls and the external forces on
suspended particles are specified. For computational co
nience, we have performed monolayer simulations in wh
the spheres are restricted from translating in thez direction
and the rotational movement of the spheres is allowed in
z direction only. Though this restriction will have an effe
on the microstructure and therefore the bulk properties of
suspension, we expect that the essential physics of the p
lem is retained in a monolayer simulation@1,21#.

The velocities of the suspended particles are given by

RFU
ss 3Us1RFU

sw 3Uw52Fs ~1!

and the forces on the walls by

RFU
ws 3Us1RFU

ww3Uw52Fw. ~2!
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Here,Us is the vector of velocities of the suspended partic
andFs is the vector of~external! forces on them. Similarly,
Uw andFw are the velocities and forces, respectively, of t
wall discretizations. The resistanceRFU depends only on the
configuration, or the separation between particles, and
superscripts on it indicate the couplings between the sph
and walls~see Singh and Nott@2#!. The shear stresssyx and
the normal stresssyy are determined directly from the force
on the walls, but determination of the normal stresssxx is
slightly more complicated~see@2# for details!. Upon deter-
miningUs for a given configuration, the particle positions a
updated by integrating

dxs

dt
5Us, ~3!

and the entire process of solving Eqs.~1!–~3! is repeated to
continue the simulation.

While there is no external body force on the particles,
have imposed an interparticle repulsive interaction betw
them. Its main utility is in preventing the frequent partic
overlaps which result from the finite time step in the sim
lation, but it also provides a qualitative model for nonhydr
dynamic effects@20,22# when the interparticle separation
very small. The form of the repulsive force we have used
the same as in the simulations of@1#,

Fab5F0

me2me

12e2me
eab , ~4!

whereFab is the force exerted by sphereb on spherea. The
parametersm and F0 specify the range of the force and i

FIG. 1. A schematic representation of the master cell for
simulations. The layer of pure fluid allows us to periodically rep
cate the master cell and yet impose uniform shear in the suspen
~see@2# for details!.
9-3
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DASAN, RAMAMOHAN, SINGH, AND NOTT PHYSICAL REVIEW E66, 021409 ~2002!
magnitude, respectively,e is the separation between the su
faces of the spheres, andeab is the unit vector connecting th
sphere centers.

In the results that follow, all lengths have been scaled
the particle radiusa, time by a/U ~see Fig. 1!, forces by
6phUa (h being the viscosity of the suspending fluid!, and
stresses byhU/H.

The only parameters in the problem are the Couette gaH
~rendered nondimensional by the particle radiusa), the area
fraction of particlesf, and the parametersF0 andm, which
determine the repulsive interaction. The number of s
pended particlesNp is related tof and H by the relation
Np5f/(pH2). We computed the stresses for a range
these parameters, and analyzed their time series. Most o
results were obtained withH518,F051024, and m5100,
and particle area fraction in the range 0.0520.6. We have
studied the effect ofH by performing simulations forH
514,18,30 forf50.2 andF0 andm remaining as above. To
study the sensitivity of our results to the repulsive inter
tion, we have performed simulations form510, 100, and
1000, keepingF0m50.01 forf50.4 andH518.

V. NONLINEAR TIME-SERIES ANALYSIS

Figures 2~a! and 2~b! show that the shear and norm
stresses in a suspension of spheres subjected to plane Co
flow exhibit persistent temporal fluctuations. A detail
analysis of these irregular fluctuations in the stress, us
topological and dynamical methods, may reveal signific
features about the dynamical system. The basic feature in
analysis using nonlinear dynamical methods is the charac
ization of the attractor, a bounded subset of the phase s
to which the system behavior eventually converges a
evolves in time. This characterization is based on the rec
struction of the attractor of the system using delay rec
struction or other similar methods. A critical review in impl
menting different methods for the characterization of
attractor of dynamical systems and its implications are gi
in @23# and references therein.

Let x(t) represent the dynamics of a system,x being the
properties that identify its state. In an experiment, we may
able to measure only a single scalar as a function of t
y(t). For instance, in a fluid flow experiment we may be a
to measure the pressure as a function of time. Since the p
sure depends only on the state of the system, we ha
functional relationy(t)5h„x(t)…, whereh is the measure-
ment function relatingy to x. We now define the delay coor
dinate vector (y(t),y(t1t),y(t12t), . . . ,y„t1(m21)t…)
with time delayt, and propose that it is related tox(t) by

F„x~ t !…5~y~ t !,y~ t1t!, . . . ,y„t1~m21!t…!

5„h„x~ t !…,h„x~ t1t!…, . . . ,h~x„t1~m21!t…!….

~5!

Takens@24# showed that for autonomous and purely det
ministic systems@i.e., a system of differential equation
]j/]t5 f „j(t)… in which f is not explicitly a function oft#,
the delay reconstruction mapF, a bicontinuous differen-
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tiable function~diffeomorphism! which maps the statex into
an m-dimensional delay vector, is an embedding whenm
>2n11, wheren is the dimension of the phase space
which the attractor of the dynamical system evolves.@We say
that F:X→Y is an embedding of one compact spaceX into
anotherY, if there is a one-to-one correspondence betweeX
andF(X) with F andF21 continuous, such that it preserve
the differentiable structure@25# of the attractor including
such quantities as Lyapunov exponents, dimension estim
etc.# This theorem, called Takens’ embedding theorem,
serts that if the attractor dimension isn, then for a complete
understanding of the attractor, 2n11 dimensions in the em
bedded space are sufficient. Further generalizations@26,27#
assert that any embedding dimension larger than the
counting attractor dimension~see Sec. V B! is sufficient, and
in most cases the smallest integer greater than the correla
dimension~see Sec. V B! is sufficient for a complete charac
terization of the attractor@28#. Hence most of the significan
characteristics, dynamical and geometrical, of the origi
system are carried over to the reconstructed phase sp
Mathematically speaking, the characteristics of the origi
phase space are topologically and metrically equivalent to
mirror dynamical flow in the reconstructed phase space,
the orbits of the original phase space are transformed

FIG. 2. Typical examples of the time series of the dimensionl
shear~a! and normal~b! stresses against dimensionless time, sho
here forH518 andf50.2.
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orbits in the reconstructed phase space in such a way
their sense of orientation is preserved. Further, topolog
properties such as the number of significant eigenvalues,
dynamical and metrical properties such as Lyapunov ex
nents and different types of dimension measures~correlation
dimension, Lyapunov dimension, box counting dimensi
information dimension, etc.!, are preserved@25#. In view of
embedding theory, we can estimate the various dimens
and Lyapunov exponents, and perform reasonable pre
tions of future events based on this mapping.

A. Choosing the time delay§

A direct application of the embedding theorem in re
situations is impractical as it is valid only for an infinite
long and noise-free time series of a dynamical system
principle, there is no restriction on the choice of the tim
delay. In practice, however, proper choice of both time de
and embedding dimension are of great significance and
information contained in a time-delay representation of r
data is greatly influenced by the choice of these embedd
parameters. Noise is usually of frequencies higher than th
of the inherent dynamics of the system, and therefore
poses a lower bound on the time delay; using a time de
smaller than the largest significant noise time period w
result in artificially high dimension. Even in the absence
noise, choosing too small a time delay will illustrate only t
temporal correlation in the data, rather than its chaotic
namics. Using too large a time delay runs the risk of miss
genuine variations at smaller time scales. Thus, the opti
time delay is one for which the characteristics of the dyna
ics observed in the embedded space are not due to noise
temporal correlations of points, on the one hand, but
inherent dynamics of the system are not left out on the ot
This can be quantified by using the autocorrelation funct

A~§!5(
n

~xn2 x̄!~xn1§2 x̄!, ~6!

which is a normalized measure of the linear correlat
among successive values of a time series$xn%n51

N . Above,x̄

is the temporal mean of the time tracex̄5(1/N)(n51
N xn . The

decay of the autocorrelation with§ is a direct way to deter-
mine the decorrelation lag time~the time needed for the sys
tem to ‘‘forget’’ its initial conditions!. The optimal time delay
can be taken as the value of§ at which the autocorrelation
function attains its first zero@29#, or its first local minimum.

The time-delayed average mutual informationI is also a
tool to determine a reasonable delay. A distinguishing fea
of I over the autocorrelation function is that it takes in
account the nonlinear correlations in the data; it is given

I52(
i j

pi j ~§!ln
pi j ~§!

pipj
, ~7!

wherepi is the probability that one data point~observation!
falls in thei th interval for some partition on the real numbe
and pi j (§) is the joint probability that an observation fal
into thei th interval and the observation time§ later falls into
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the j th interval. Here too the optimal delay is that corr
sponding to the first minimum or zero ofI. Another method
to find a proper time lag is the space-time separation p
@30#. This procedure estimates the time lag for the system
free itself from the temporal correlations of points in pha
space@6#.

B. Choosing the embedding dimensionm

The next crucial problem in nonlinear time-series analy
is to fix the number of independent coordinates required
reconstruct the attractor governing the dynamics of the s
tem. The usual procedure is the following: a value ofm is
assumed and the data embedded inm-dimensional space
The volume of the resulting set is then determined by cou
ing the number ofm-dimensional cubes of sizee needed to
enclose the set. The box counting dimension of the attra
is then given by

D05 lim
e→0

ln N~e!

ln~1/e!
. ~8!

In practice,N(e) is determined for various embedding d
mensions starting from unity, over a range ofe. If the plot of
ln N(e)/ln(1/e) againste shows a plateau at approximate
the same value for a sufficiently large range ofe for all
embedding dimensions greater than a critical valuemc , a
good approximation to the box counting dimension of t
attractor ismc . In computing the box counting dimension o
an attractor, equal importance is given to all the cubes
enclose the data in phase space. However, for attractors
ing a fractional dimension, certain regions in phase space
visited more frequently by the trajectory and hence grea
weightage should be given to cubes in that region. Gra
berger@31#, Grassberger and Procaccia@32#, and others in-
troduced the generalized dimensionDq which depends con-
tinuously onq as

Dq5
1

12q
lim
e→0

ln I ~q,e!

ln~1/e!
, ~9!

where

I ~q,e!5 (
i 51

N(e)

m i
q , ~10!

where m i is the natural measure of cubei and the sum is
taken for all theN(e) cubes of sizee needed to enclose th
attractor. Here the natural measure of cubei is given by

m i5 lim
T→`

h~ i ,x0 ,T!

T
, ~11!

whereh( i ,x0 ,T) is the amount of time the orbit originatin
from a typical pointx0 spends in the cubei in the time
interval 0<t<T @33#. Of all the Dq dimensions, the corre
lation dimensionD2 is easiest to compute from a time serie
Further simplification ofD2 from the above expression give
9-5
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D25 lim
r→0

ln C2~r !

ln r
, ~12!

where C2(r ) is the correlation integral for radiusr which
obeys a scaling relationC2(r );r D2 in the limit r→0. @In
general, for a self-similar structure, the correlation integ
Cq(e) of order q satisfiesCq(e);e (q21)Dq as e→0.# The
correlation integral depends on the embedding dimensiom
of the reconstructed phase space as

C2~r ,m!5
2

N~N21!(i 51

N

(
j 5 i 11

N

Q„r 2ix~ i !2x~ j !i…,

~13!

where Q(a)51 if a.0,Q(a)50 if a<0,x(t) is the
m-dimensional vector of time-delay coordinates, andN is the
length of the time series. The scaling exponentd increases
with m and saturates to a final valueD2 for sufficiently large
embedding dimensionmc @25#. In general, it is difficult to
find a plateau region for a given value ofm. Theoretically,
D2 has to be determined as the radius of the hyperspher
tends to 0 andm large. But in calculation small values ofr
are blurred by noise and limitations on the accuracy of
data and large values ofm are not considered due to practic
limitations. Practically, one finds a range (r L ,r U) of r over
which lnC2(r,m)/ln r gives an approximate plateau regio
with some tolerance6Dm.

For nonstochastic signals, the correlation dimension e
mate is unaffected by small variations in the time delay.
the other hand, signals dominated by white noise will sh
statistically significant changes in the correlation dimens
for different embedding dimensions, rarely converging to
fixed estimate of the correlation dimension asm increases
~never converging for pure white noise!, and small changes
in time delay will affect the correlation dimension estima
significantly. In most cases,mc is the smallest integer large
thanD2 @28#. When the exponentd of the correlation integra
for various embedding dimensions reveals a plateau at
values ofr and the plateau converges for increasingm, there
is strong evidence for a low dimensionality of the underlyi
dynamics of the system. Usually, the correlation dimens
from a time series is compared with other dimension e
mates to ensure its veracity. In most cases it gives a g
approximation to the number of equations required to mo
the system. Further, an accurate measurement of correl
dimension will reveal the possibility of a strange attractor
D2 is not an integer.

Another technique for finding the minimum number
independent variables to describe the dynamics of the sys
is the false-nearest-neighbor~FNN! method@34,35#. The ba-
sic idea behind the method is that if an embedding dimens
less than the actual dimension of the attractor is chose
will not unfold the true geometry of the attractor and the
will be self-intersections leading to false neighbors. For
ample, if a sphere is embedded in two dimensions, the
sulting structure will be a circular disk, and diametrica
opposite points on the sphere~in the direction of projection!
will become false neighbors. To determine the sufficie
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number of time-delay coordinates, one looks for the nea
neighbor xd( j ) in d-dimensional embedded space of ea
vectorxd( i ), with respect to any metric. The distancer d( i , j )
between the vectors ind-dimensional embedded space
then compared with the distancer d11( i , j ) if the data were
embedded in (d11) dimensions. For instance, if theL2 met-
ric is used,r d11( i , j ) can be written in terms ofr d( i , j ) as

r d11
2 ~ i , j !5r d

2~ i , j !1@x~ i 1dt!2x~ j 1dt!#2. ~14!

If r d11( i , j )/r d( i , j )@1,xd( j ) is a false neighbor ofxd( i ); the
cutoff value of the ratio in our calculations, above which t
point is taken to be a false neighbor, is 10. If only a sm
fraction of the neighbors are false,d can be considered to b
an embedding dimension for the dynamics of the attracto

Use of both the above methods of finding the dimens
of an attractor together leads to a good estimate of the ac
dimension of the attractor, but neither of them can repla
the other. Along with these methods, we used the princ
component analysis to find the number of principal comp
nents~or significant eigenvalues! contributing to the dynam-
ics of the system. We do not describe the procedure here
refer the reader to Broomhead and King@36# for details. This
method gives an upper bound to the number of independ
coordinates required to reconstruct the attractor of the
namical system. We also used some standard tools for
estimation of invariants of the dynamical system which
explain at the appropriate places below.

VI. RESULTS AND DISCUSSION

We restrict our attention to neutrally buoyant suspensio
where the densities of the suspended particles and the
are equal. The initial configuration of the suspended sphe
was generated by first arranging the particles in a reg
array and then applying small random displacements un
uniform distribution is reached. The system is allowed
evolve for about 5000 dimensionless time units and the
locity and stress fields are then recorded over the subseq
95 000 time units. We used the softwares Chaos Data A
lyzer Professional Version 2.1 of the Academic Software
brary of the American Physical Society, theTISEAN Package
@7#, and visual recurrence analysis@37# for performing the
tests on the time series.

A frequency decomposition of the shear stress show
broadband spectrum~Fig. 3!, which is characteristic of both
deterministic chaos and a linear stochastic process@38,39#.
The power spectrum shows an exponential decay with
quency, which again is common to deterministic chaos a
linear autocorrelated noise. Therefore, a complete chara
ization of this behavior must be investigated by methods t
can distinguish between deterministic chaos and linear a
correlated noise~or a stochastic process!. In this paper we
use both the surrogate data analysis method and the v
recurrence analysis method, which are described below
differentiate linear autocorrelated noise~or a stochastic pro-
cess! from deterministic chaos.

The autocorrelation function of the shear stress time se
converges to a local minimum at a time lag of roughly
9-6
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STRESS FLUCTUATIONS IN SHEARED STOKESIAN . . . PHYSICAL REVIEW E66, 021409 ~2002!
time steps~a time step is equal to one dimensionless ti
unit!. The average mutual information plot also sho
roughly the same time delay. Along with these methods
used the space-time separation plot@30# to determine an op-
timal time delay. The importance of this method lies in e
cluding temporal correlations of points in phase space. T
is, pairs of points which are measured within a short ti
span tend to be close in phase space and this will adver
affect the computation of the correlation integral. We use
correlation integral to compute the effective dimension of
underlying dynamics which is in no way related to the clo
ness of points in phase space due to temporal correla
The idea in a space-time separation plot is that in the p
ence of temporal correlations the probability that a given p
of points has a distance smaller thane does not only depend
on e but also on the time that has elapsed between the
measurements. This interdependence can be detected by
ting the number of pairs of points as a function of two va
ables, namely the time separationDt and the spatial distanc
e. In Fig. 4, contour lines are shown at the spatial distance
where for a given temporal separationDt, a fraction of
1/20,2/20, . . . of pairs are found. We observe a saturation
these contour lines aboveDt517. Hence this value can b
regarded as a fair estimate of the decorrelation time wh
will exclude the influence of successive points due to te
poral correlations.

The estimation of certain invariants, viz., correlation d
mension, Lyapunov exponents, etc., requires a proper ch
of Theiler’s windowv @40#, which provides guidelines fo
proper sampling of points from a time series of data. The
@40# suggested that all pairs of points whose time indic
differ by less thanv may be ignored, wherev is approxi-
mately equal to the product of time lag and embedding
mension. For the computation of the correlation dimensi
for instance, this requires the lower limit ofj in Eq. ~13! to
be changed toi 1v, and the factor multiplying the summa
tion to be replaced by (2/N)(N2v). Using the above infor-
mation as a basis, we take Theiler’s window as 100 for

FIG. 3. Power spectral density of the normal stresssyy vs fre-
quency~made dimensionless by scaling with the shear rateU/H)
for H518 andf50.2. Exponential decay of the power with fre
quency is clearly seen, which is characteristic of both chaotic
linear stochastic signals.
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estimation of certain invariant characteristics of the time
ries.

A. Low dimensionality of the attractor

In nonlinear time-series analysis, we are interested
characterizing the underlying attractor, a bounded limit
for typical initial conditions in some region of the phas
space of the dynamical system. One of the parameters
characterizes an attractor is its dimension, which can be
garded as a measure of the amount of information neces
to specify the position of a point on the attractor within
given accuracy. For an accurate estimation of the attra
dimension, we the use principal component analysis,
false-nearest-neighbor method, and the Grassber
Procaccia algorithm.

We performed a principal component analysis~see Sec.
V B! on the normal and shear stresses for different part
area fractions. In this analysis, the dimension of the cov
ance matrix~see@36#! was chosen to be large enough that t
significant eigenvalues did not vary much with the dime
sion. We get five significant eigenvalues~i.e., positive and
greater than the noise floor! for f50.2, between five and
seven values for 0.2,f,0.5, and above seven significa
eigenvalues forf.0.5. This is illustrated in Fig. 5, which
shows the eigenvalues obtained from a principal compon
analysis of the shear stress time series for three values of.
As the number of significant eigenvalues is an upper bo
for the dimension of the attractor@41,6#, this is an indication
that the number of independent coordinates required to c
ture the characteristics of the system increases withf.

The false-nearest-neighbor method, described in S
V B, shows that the behavior of the attractor can be
scribed by four or five independent coordinates as fracti
of the false neighbors becomes very small at an embed
dimension of 5~Fig. 6! when f,0.4. An estimate of the
correlation dimension strengthens this conclusion. For an
curate estimation of the correlation dimension, we used

d

FIG. 4. Space-time separation plot of the normal stresssyy for
H518 andf50.2. The lines are contours of probability densiti
1/20, 2/20, 3/20, etc.~increasing in upward direction!, for the nor-
mal stress at dimensionless timet5t01dt, with e being different
from that att5t0, averaged over allt0.
9-7
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DASAN, RAMAMOHAN, SINGH, AND NOTT PHYSICAL REVIEW E66, 021409 ~2002!
Grassberger-Procaccia algorithm@32#. We took 95 000 data
points of the time series of the normal and shear stres
after deleting the initial transients, and computed the co
lation integral for embedding dimensions ranging from 1
25 with a time delayt517. The plot in Fig. 7 shows that th
curves for high embedding dimensions converge in the ra
0.27,r ,0.37, where lnC2(r,m)/ln r is approximately con-
stant, indicating the existence of a low-dimensional attrac
However, the presence of local peaks in this region indica
the absence of clear correlation, and hence this method is
definitive in showing low dimensionality. We note, howeve
that this figure is typical of many in the literature. Moreov
the principal component analysis, the false-nearest-neigh
method, the nonlinear prediction method~discussed below!,
and the presence of structure in the three-dimensional ph
space plot all give strong indications of low dimensionali
In all the cases we obtained a fractional correlation dim
sion, indicating the existence of a low-dimensional stran
attractor. The attractor dimension determined from the ‘‘p
teau’’ region in Fig. 7 yields a correlation dimension betwe
2 and 4. Table I shows the correlation dimension of the n

FIG. 5. The eigenvaluesei in decreasing order of magnitude fo
the shear stresssyx for H518.

FIG. 6. Fraction of false nearest neighbors as a function of
embedding dimensionm for the syx time series, forH518.
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mal and shear stresses for area fractionsf between 0.2 and
0.6. We observe that for any given particle concentration
correlation dimension estimates from the normal and sh
stress time series are quite close. It is also apparent tha
correlation dimension increases with area fraction.

In high-dimensional systems, the prediction of succeed
data points is a robust method for estimating the dimens
of the underlying attractor. The embedding dimension
which the prediction error is a minimum is a good estima
of the dimension of the attractor. We used the locally co
stant predictor method~see Sec. VII! for predictingone-step
ahead the successive fluctuations of the stresses. We u
13 000 data points in the time trace of the shear or nor
stress to determine the structure of the underlying attrac
and predicted the evolution for 35 succeeding dimension
time steps. We then computed the normalized mean-sq
error ~NMSE! of prediction. We observed that for an are
fraction less than 0.4, the NMSE is minimum when the e
bedding dimension is 3 or 4. All these tests put toget
indicate strong evidence for the low dimensionality of t
underlying attractor.

To study the influence of the Couette gapH on the invari-
ant properties, we analyzed the time series of the stress c

TABLE I. Correlation dimensionD2 determined from the time
series ofsyy andsyx , for H518 and a range of the area fractionf.
Note that the estimates ofD2 from the two stress components a
quite close, and are much smaller than the number of degree
freedom 2Np . Also note the increase inD2 with particle concen-
tration f.

D2

f Np syx syy

0.2 21 3.2 3.4
0.4 42 4.1 4.2
0.5 48 4.8 4.3
0.6 63 5.5 5.5e

FIG. 7. A ‘‘plateau’’ of lnC2(r,m)/ln r in the region 0.27,r
,0.37 giving an approximate value of correlation dimensionD2.
The correlation integralC2(r ,m) was determined for the time serie
of the normal stresssxx , for H518 andf50.2. Though this test is
not definitive, as there are local peaks within the plateau region,
plateau converges for higher embedding dimension, indicating
dence for low dimensionality of the attractor.
9-8
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STRESS FLUCTUATIONS IN SHEARED STOKESIAN . . . PHYSICAL REVIEW E66, 021409 ~2002!
ponents forH514,18, and 30. Table II gives the correlatio
dimension for an area fractionf50.2. We observe a sligh
decrease in the correlation dimension as the Couette ga
creases. This is in agreement with the trend of the princ
components~eigenvalues! for the above data, shown in Fig
8. We also determined the correlation dimension for differ
values ofm, the range of the repulsive interparticle intera
tion ~keepingF0m50.01) for a Couette gap ofH518, and a
particle concentrationf50.4. These results are tabulated
Table III; it is apparent that there is no significant variation
the correlation dimension withm.

The second columns in Tables I and II give the numbe
particlesNp in the simulations; the number of degrees
freedom is 2Np , as two Cartesian coordinates determine
position, and hence all other properties, for each parti
ComparingNp andD2, it is clear that the apparent dimensio
of the system is always far smaller than the number of
grees of freedom.

B. Deterministic nature of the system

A finite length time series with a broadband power sp
trum may be a realization of a stochastic process gover
by an autoregressive moving average model or of a lo
dimensional deterministic chaotic process@42#. Further,
some geometrical or dynamical characteristics~low correla-
tion dimension or positive Lyapunov exponent, etc.! of the
low-dimensional chaotic dynamics can be observed fr

TABLE II. Correlation dimension determined from time seri
of syy and syx for different Couette gaps,H514,18, and 30 for
f50.2. There is a slight decreasing trend inD2 with increasingH.

D2

H Np syx syy

14 13 3.7 3.8
18 21 3.2 3.4
30 57 3.0 3.0

FIG. 8. The eigenvaluesei in decreasing order of magnitude fo
the shear stresssyx , for Couette gapsH514, 18, and 30 atf
50.2.
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particular linear stochastic dynamics. Hence, the analysi
a time series has to distinguish between linear stochastic
deterministic dynamics. We used both surrogate data ana
and the visual recurrence analysis~VRA! method @37# to
make this distinction. According to surrogate data analy
theory, the geometrical and dynamical characteristics o
time series must be compared with those of stochastic sig
which have the same power spectrum and amplitude di
bution as the original data@3#. One surrogate of a time serie
which tests for linear stochastic processes is obtained by
domizing the phases of the Fourier coefficients of the ti
series. One takes an ensemble of surrogates of the time s
to compare with the original time series. In order to dist
guish the nonlinear deterministic process from a linear s
chastic process, we use a discriminating staticQ defined by

Q5
mobs2msur

ssur
, ~15!

where mobs is a characteristic measured from the origin
time series,msur is the average value of the same charact
istic measured from the ensemble of surrogates, andssur is
the standard deviation of the characteristic for the ensem
of surrogates. We computed the correlation dimension of
sets of such phase-shuffled time series for the shear and
mal stresses. We found that 10,Q,15, i.e., the correlation
dimension of the original time series differs by 10 to 1
standard deviations from the mean correlation dimension
the ensemble of surrogates, clearly indicating that the dif
ence is statistically significant. We also used the VR
method to determine the presence of structure in the st
fluctuations. The importance of the recurrence plot, one
the tools available in the VRA, is that the presence of str
ture can be visualized by means of color graphics. Once
dynamical system is reconstructed by means of delay c
dinates, the distance between all pairs of vectorsx( i ) and
x( j ) is computed and various color codes are assigned
different distances. In a two-dimensional recurrence plo
color code at the (i , j ) position specifies the distance betwe
the vectorsx( i ) and x( j ). For random signals, a uniform
distribution of colors over the entire plane is obtained and
deterministic signals we obtain coherent structures in the
currence plot. This method demonstrated the existence
coherent structure in the stress fluctuations in the suspen
@Fig. 9~a!#. We also computed the spatio-temporal entro
for the stress. This quantity compares the distribution of c

TABLE III. Correlation dimension determined from time serie
of syy and syx for different ranges of the interparticle repulsiv
force, m510, 100, and 1000~with F0m50.01). The data are for
H518 andf50.4, with the number of particlesNp543. Note that
D2 is relatively insensitive to changes inm.

D2

m syx syy

10 4.3 4.2
100 4.1 4.2
1000 4.2 4.1
9-9
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DASAN, RAMAMOHAN, SINGH, AND NOTT PHYSICAL REVIEW E66, 021409 ~2002!
ors over the entire recurrence plot with the distribution
colors over each diagonal line (j 5 i 1const) of the recur-
rence plot. The higher the combined differences@43# be-
tween the global distribution and the distributions over
individual diagonal lines, the more structured the image is
physical terms, this compares the distribution of distan
between all pairs of vectors in the reconstructed state sp
with the distribution of distances between different orb
evolving in time ~for details, see@44#!. For random signals
the value of spatio-temporal entropy will be close to 100
and for deterministic signals the value will be considera
less. The calculated values of the spatio-temporal entropy
the shear and normal stresses were nearly zero, showing
fect structure in the data. We observed definite structure
the phase-space plot of the stress components@Fig. 9~b!#.
The predictability of the signal is also strong evidence for
deterministic nature of the system. From the above tests
conclude that the fluctuations in the normal and sh
stresses are due to a low-dimensional deterministic proc

C. Chaotic nature of the system

A striking behavior of some dynamical systems is th
sensitive dependence on initial conditions, i.e., the div

FIG. 9. ~a! Recurrence plot for the dimensionless shear str
syx for H518 andf50.2. The definite structure in the plot i
apparent; data with white noise yield a uniform distribution
color. The axes labelsi andj are index numbers of the data points
the time series. The color bar on the right indicates the distan
color mapping, with white representing zero distance and bl
representing the largest distance.~b! Phase-space plot of the dimen
sionless normal stresssyy , for H518,f50.2, andt517 .
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gence with time of trajectories from arbitrarily close initi
conditions. An aperiodic bounded system having a sensi
dependence on initial conditions is termed a chaotic syst
To determine the existence of such behavior in our syst
we computed the stress for two slightly different initial di
tribution of particles~the position of a pair of particles dif
fered slightly in the two initial configurations!. Figure 10~a!
shows the rapid divergence of the shear stress for the
initial configurations. The difference between the she
stresses of the two trajectories increases exponentially@Fig.
10~b!# for small t. Computing this exponential divergence
arbitrarily close trajectories over a time interval is of gre
significance in analyzing a time series obtained from a
namical system. For a comprehensive characterization of
underlying attractor, we computed the maximum Lyapun
exponent ~computation of the complete spectrum
Lyapunov exponents is tedious and requires a large am
of data!, which measures the average rate of divergence
convergence of nearby orbits. The existence of a posi
Lyapunov exponent is strong evidence for the chaotic na
of the system.

Several methods have been reported in the literature
efficient and accurate estimation of Lyapunov exponents,
we use the method developed by Kantz@45#. For computing
the maximum Lyapunov exponent, we consider the repres
tation of the time-series data as a trajectory in the embedd
space. Then we construct a neighborhoodUn with radius r
and centerxn0

in the embedded space. Letxn be a very close

return of the previously visited pointxn0
; thenD05xn0

2xn

is a small perturbation. If one finds that its futureD t
5xn01t2xn1t is given byuD tu'D0elt, thenl is the maxi-
mal Lyapunov exponent. Using the Kantz method@46,6#, we
compute

S~r ,m,Dn!

5
1

N (
n051

N

lnS 1

uU~xn0
!u (

xnPU(xn0
)
Uxn01Dn2xn1DnU D

~16!

for a point xn0
of the time series in the embedded spa

whereU(xn0
) is the neighborhood ofxnO

with diameterr. If

S(r ,m,Dn) increases linearly withDn for small Dn, with
identical slope for all dimensionsm larger than somemc and
for a reasonable range ofr, then the slope can be taken as
estimate of the maximal Lyapunov exponentl . Here the
effective expansion rate over a time span is averaged f
range of values ofn0. Figure 11 showsS(r ,m,Dn) increas-
ing linearly withDn, and the slope is roughly independent
the embedding dimension if it is greater than 4. The lines
Fig. 11 are form54,5, and for values ofr in the range 5
31025 to 1023. Our estimate of the maximum Lyapuno
exponent from this figure is approximately 0.43.

The maximum Lyapunov exponents computed from
time traces of the normal and shear stresses, for a par
area fraction in the range 0.05–0.5, are tabulated in Table
The general trend of a rise in the maximum Lyapunov ex

s

e-
k
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STRESS FLUCTUATIONS IN SHEARED STOKESIAN . . . PHYSICAL REVIEW E66, 021409 ~2002!
nent with f is apparent. This increase in the Lyapunov e
ponent is strong indication of many-particle interactio
leading to chaotic behavior. We obtained numerical evide
for the presence of a chaotic attractor in the system even
the smallest area fraction of particles we considered. We
computed the entropy of the system, which indicates the c
otic nature of the system, defined in the following manner
the system is embedded inm-dimensional space with dela
t, then them dependence of the correlation integralCq(r ,m)
of orderq for largem can be expressed@23,32,25# as

Cq~r ,m!5a~m!e2(q21)hqtmr (q21)Dq ~17!

asr→0 andm→`, wherehq is called theqth-order entropy.
Computing the entropy forq52 is the easiest, and it can b
performed along with the computation of the correlation
mensionD2. Our calculations show that the entropy, whi
is always less than or equal to the sum of the posit
Lyapunov exponents, is positive for all particle concent
tions.

FIG. 10. Divergence of close trajectoriesx(t) and y(t) of the
shear stresssyx for H518 andf50.2. ~b! is the plot of the loga-
rithm of the differencex(t)2y(t) against dimensionless timet,
showing clearly the exponential increase for smallt in the differ-
ence between the stresses for the two trajectories in~a!, indicating
chaos.
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Further evidence of chaos is provided by the one-st
ahead and multistep-ahead predictions of successive fluc
tions of the stresses~see Sec. VII!. While the one-step-ahea
successive prediction is quite accurate up to nearly 35 t
steps in the future@Fig. 12~b!#, the multistep-ahead predic
tion diverges from the actual time trace after 3–5 time un
@Fig. 12~a!#. This apparent distinction between the two pr
dictions is a clear indication of the sensitive dependence
initial conditions of nearby trajectories. Lastly, the pow
spectrum of the time series of the normal and shear stre
also shows exponential decay, indicating the chaotic na
of the signal~Fig. 3!.

Given all the above evidence, we conclude that the attr
tor underlying the fluctuations in the stress has a fractio
correlation dimension, and is a consequence of lo
dimensional chaotic dynamics.

VII. PREDICTION OF SUCCESSIVE FLUCTUATIONS

As mentioned in Sec. III, an important feature of chao
systems is their exponential sensitivity to initial condition
the average error made when forecasting the outcome
future measurement increases exponentially with time. T
length of the period over which accurate short-term pred
tions of the successive fluctuations of the signal are poss
is determined by the accuracy of the initial conditions a
estimate of the Lyapunov exponent. We use local model
predict the one-step and multistep procedures. That is,
stead of fitting one complex model with many coefficients
the entire data set, we fit many simple models~low-order
polynomials! to small portions of the data set depending
the geometry of the local neighborhood of the dynami
system. The general procedure is the following: the l
known state of the system, represented by a vectox
5(x(n),x(n1t), . . . ,x„n1(m21)t…), is determined,
wherem is the embedding dimension andt is the time delay.
Then p close states~usually nearest neighbors ofx) of the
system that have occurred in the past are found, by com
ing their distances fromx. The idea then is to fit a map whic
extrapolatesx and itsp nearest neighbors to determine th
next values. Using this map, an approximate value ofx(n
11) can be obtained. We use both the one-step-
multistep-ahead prediction methods. In the one-step-ah
prediction, after each step in the future is predicted, the
tual value is utilized for the next one-step prediction. In co
trast, the multistep prediction is based only on the initiap
states. The normalized mean-squared error~NMSE!, referred
to in Sec. VI A, is computed by comparing the mean-squ
error~between data and prediction! of the above method with
the MSE of the unconditional mean predictor method~a
trivial method which predicts the average of the observ
values as the subsequent value!. As stated in Sec. VI A, we
observed that the NMSE is minimum whenm is between 3
and 4 forf less than 0.4, roughly 5 forf between 0.4 and
0.5, and is above 5 forf greater than 0.5.

From the time series of the stresses up to a given timet0,
we predicted their subsequent evolution~i.e., the multistep
prediction! using the locally constant predictor~in VRA!. A
good prediction is possible only up tot5t013, as shown in
9-11
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Fig. 12~a!. In contrast, the one-step-ahead prediction@37# of
successive fluctuations of the stress is quite accurate fo
time @Fig. 12~b!#, indicating the deterministic nature of th
system.

VIII. CROSS PREDICTION OF THE TIME SERIES

Cross prediction of one time series from the time series
another related variable was introduced recently by Ab
banelet al. @46#. This technique has potential application
situations where the measurement of one quantity is diffi
or expensive, while the measurement of a related variab
easy or inexpensive. In such a case, simultaneous mea
ments of both variables need to be made for a baseline
riod, and then the easily measured variable can be use
predict the other. The cross prediction of a signal~response
signal! y(t) from another signal~drive signal! x(t) implies
the existence of a functional relationC such that y(t)
5C„x(t)…. One significance of this technique is that the p
diction of one variable from another can be made with
knowing the properties ofC. When the phase-space poin
of the driving and response systems are connected by su
functional relationC, two nearby states in the phase space

TABLE IV. The maximum Lyapunov exponent for thesyy and
syx time series, forH518 and various particle concentrationsf.
The Lyapunov exponent increases withf, implying that the system
is more chaotic when the particle concentration is increased.

l

f syx syy

0.05 0.25 0.22
0.1 0.33 0.18
0.2 0.42 0.34
0.3 0.42 0.35
0.4 0.43 0.42
0.5 0.49 0.45

FIG. 11. The functionS(r ,m,Dn) @see Eq.~16!# vs Dn for
various embedding dimensions. The slope is approximately 0
~independent ofm) for m>4. Data are for the dimensionless no
mal stresssyy for H518 andf50.2.
02140
all

f
r-

lt
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re-
e-
to

-
t

h a
f

the driving system correspond to two nearby states in
phase space of the response system. This property of a
of such systems can be characterized by the mutual fa
nearest-neighbors~MFNN! parameter@34#. For systems pre-
serving this identity of neighbors in state space, the value
the parameter will be of the order of unity. We computed th
the MFNN for the shear and normal stresses is close to un
We used the nearest-neighbor method@7# to predict the nor-
mal stress from the shear stress time series, and the re
for f50.4 are shown in Fig. 13.

IX. DISCUSSION

We have analyzed, using the tools of nonlinear dynam
and chaos theory, the fluctuations in the shear and nor
stresses developed when a Stokesian suspension is sub
to simple shear flow. We have found numerical evidence
the existence of a low-dimensional chaotic attractor for p
ticle area fractionf in the range 0.05–0.6. We have used th
information about the underlying structure in the fluctuatio
to make short-range predictions of the shear and nor
stresses, and cross predictions of one component of the s
with knowledge of the other, with significant success. T
rise in the correlation dimension and Lyapunov expon
with f gives a clear indication of the influence of partic
interactions on the chaotic response of the suspension.
existence of a low-dimensional chaotic attractor underly

3

FIG. 12. Multistep~a! and one-step~b! predictions of the normal
stresssyy for H518 andf50.2. Note the close agreement of th
one-step prediction with the actual time trace.
9-12
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STRESS FLUCTUATIONS IN SHEARED STOKESIAN . . . PHYSICAL REVIEW E66, 021409 ~2002!
the fluctuations opens up the possibility of technological
plications such as chaos control to temper the fluctuation

For non-Brownian Stokesian suspensions, the insta
neous value of the stress is related to the instantaneous
ration between particles, i.e., their configuration. The evo
tion of then-particle configuration distribution functionf n(r)
is governed by the Smoluchowski equation@9#, which re-
duces to a balance between accumulation and advectio
the absence of Brownian motion,

] f n

]t
1 (

a51

n

“a•~Ua f n!50. ~18!

If the velocitiesUa are independent off n , it is clear that Eq.
~18! yields a fixed point forf n . This was the basic assump
tion of Batchelor and Green@8# and Brady and Morris@9#.
However, for bounded shear flows of the kind considered
this work, and those one usually encounters in practice,
velocities are determined by the local viscosity of the s
pension, which in turn is a function of the configuratio
There is hence a coupling between Eq.~18! and the equa-
tions of motion of the suspension. The nonlinearity in t
coupling in Eq.~18! allows the possibility of chaotic varia
tion of the microstructure and therefore the stress, as is
dent from our results.

For large samples and over long time scales, one in
itively expects that the evolution of the stress will be ca
tured by a hydrodynamic description, an expectation tha
in agreement with our observation of low dimensionality
the attractor. However, we must emphasize that this con
sion is nota priori obvious or evident: a suspension of ma
roscopic non-Brownian particles differs in a significant w
from molecular fluid in that there is no inherent time sca
~set by the temperature! in the system. The imposed she
rate, which is the time scale of macroscopic motion, is
only time scale in the problem and, therefore, there is
separation of time scales normally observed in molecu
systems. In other words, the frequency of fluctuations in
stress scale is the imposed shear rate. Thus, low dimen
ality is an interesting observation we make, rather tha
foregone conclusion: even at the pair-interaction level,
position distribution functionf 2 is a field which in the dy-
namical sense is an infinite-dimensional quantity. Our ob
vation of low dimensionality of the stress fluctuations im
plies that only a few~between four and six! moments of the
position distribution function contribute to the stress fluctu
tions. This appears to be an important and far-reaching re
as the task of connecting the microstructure to rheolog
then much easier if we knew which of the moments of
former were the important ones and how to compute the

A clear physical picture of the stress fluctuations can
obtained if we recognize that large fluctuations in the str
arise from the formation and breakage of clusters of m
particles that sometimes span the distance between
bounding walls. In simple shear, for instance, clusters fo
in the compression quadrant where hydrodynamic for
squeeze particles together. The clusters are then rotate
02140
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the vorticity of the flow, and the particles in the cluster a
pulled apart in the extension quadrant. The rate of format
and breakage of the clusters, which determines the freque
of the stress fluctuations, is determined by the local num
density and mobility of clusters, and one therefore get
range of frequencies, as shown in Fig. 3. We also note b
the shear stress and the normal stress fluctuations have
lar correlation dimensions and maximum Lyapunov exp
nent. Since both the shear stress and the normal stres
determined by an appropriate function of the microstructu
our results indicate that the dynamics of the microstructur
governed by a low-dimensional attractor having appro
mately the same correlation dimension and maxim
Lyapunov exponent.

Comparing our simulations to a typical globally couple
map lattice, we note that the relative particle positions in o
simulations correspond to the values attained by individ
chaotic oscillators in a coupled map lattice, and the coupl
between any two particles is a chaotic function of the diff
ence in positions between any two particles. In a coup
map lattice sense, this would correspond to a globa
coupled map lattice where the coupling is calculated by su
ming up a chaotic function of the difference in values at a
instant between the oscillators~particles! taken pairwise. Our
system thus represents a generalization of a typical glob
and democratically coupled map lattice. This result may th
have significant implications for the theory of coupled m
lattices.
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FIG. 13. Cross prediction of the normal stresssyy from the
shear stresssyx for suspension withf50.4 andH518.
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